Powell-Sabin spline based multilevel preconditioners for the biharmonic equation

被引:0
|
作者
Maes, Jan [1 ]
Bultheel, Adhemar [1 ]
机构
[1] Katholieke Univ Leuven, Dept Comp Sci, B-3001 Heverlee, Belgium
关键词
BPX preconditioner; Biharmonic equation; Powell-Sabin splines;
D O I
10.1016/j.apnum.2010.01.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Powell-Sabin (PS) piecewise quadratic C(1) finite element on the PS 12-split of a triangulation is a common choice for the construction of a BPX-type preconditioner for the biharmonic equation. In this note we investigate the related Powell-Sabin element on the PS 6-split instead of the PS 12-split for the construction of such preconditioners. For the PS 6-split element multilevel spaces can be created using a root 3-refinement scheme instead of the traditional dyadic scheme. Topologically root 3-refinement has many advantages: it is a slower refinement than the dyadic split operation, and it alternates the orientation of the refined triangles. Therefore we expect a reduction of the amount of work when compared to the PS 12-split element BPX preconditioner, although both methods have the same asymptotical complexity. Numerical experiments confirm this statement. (C) 2010 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:527 / 530
页数:4
相关论文
共 50 条
  • [1] Uniform Powell-Sabin spline wavelets
    Windmolders, J
    Vanraes, E
    Dierckx, P
    Bultheel, A
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 154 (01) : 125 - 142
  • [2] Powell-Sabin spline prewavelets on the hexagonal lattice
    Maes, Jan
    Bultheel, Adhemar
    WAVELET ANALYSIS AND APPLICATIONS, 2007, : 273 - +
  • [3] Construction of quintic Powell-Sabin spline quasi-interpolants based on blossoming
    Lamnii, M.
    Mraoui, H.
    Tijini, A.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 250 : 190 - 209
  • [4] Smoothing scattered data with a monotone Powell-Sabin spline surface
    Willemans, K
    Dierckx, P
    NUMERICAL ALGORITHMS, 1996, 12 (1-2) : 215 - 232
  • [5] Quadratic spline quasi-interpolants on Powell-Sabin partitions
    Carla Manni
    Paul Sablonnière
    Advances in Computational Mathematics, 2007, 26 : 283 - 304
  • [6] Quadratic spline quasi-interpolants on Powell-Sabin partitions
    Manni, Carla
    Sablonniere, Paul
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2007, 26 (1-3) : 283 - 304
  • [7] Cubic spline quasi-interpolants on Powell-Sabin partitions
    Lamnii, A.
    Lamnii, M.
    Mraoui, H.
    BIT NUMERICAL MATHEMATICS, 2014, 54 (04) : 1099 - 1118
  • [8] Quadratic spherical spline quasi-interpolants on Powell-Sabin partitions
    Lamnii, A.
    Mraoui, H.
    Sbibih, D.
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (05) : 1094 - 1109
  • [9] Superconvergent quadratic spline quasi-interpolants on Powell-Sabin partitions
    Sbibih, D.
    Serghini, A.
    Tijini, A.
    APPLIED NUMERICAL MATHEMATICS, 2015, 87 : 74 - 86
  • [10] A multivariate Powell-Sabin interpolant
    Sorokina, T.
    Worsey, A. J.
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2008, 29 (01) : 71 - 89