Powell-Sabin spline based multilevel preconditioners for the biharmonic equation

被引:0
|
作者
Maes, Jan [1 ]
Bultheel, Adhemar [1 ]
机构
[1] Katholieke Univ Leuven, Dept Comp Sci, B-3001 Heverlee, Belgium
关键词
BPX preconditioner; Biharmonic equation; Powell-Sabin splines;
D O I
10.1016/j.apnum.2010.01.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Powell-Sabin (PS) piecewise quadratic C(1) finite element on the PS 12-split of a triangulation is a common choice for the construction of a BPX-type preconditioner for the biharmonic equation. In this note we investigate the related Powell-Sabin element on the PS 6-split instead of the PS 12-split for the construction of such preconditioners. For the PS 6-split element multilevel spaces can be created using a root 3-refinement scheme instead of the traditional dyadic scheme. Topologically root 3-refinement has many advantages: it is a slower refinement than the dyadic split operation, and it alternates the orientation of the refined triangles. Therefore we expect a reduction of the amount of work when compared to the PS 12-split element BPX preconditioner, although both methods have the same asymptotical complexity. Numerical experiments confirm this statement. (C) 2010 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:527 / 530
页数:4
相关论文
共 50 条
  • [41] On calculating normalized Powell-Sabin B-splines
    Dierckx, P
    COMPUTER AIDED GEOMETRIC DESIGN, 1997, 15 (01) : 61 - 78
  • [42] Shape control in Powell-Sabin quasi-interpolation
    Manni, Carla
    ALGORITHMS FOR APPROXIMATION, PROCEEDINGS, 2007, : 219 - 239
  • [43] Dyadic and √3-subdivision for uniform Powell-Sabin splines
    Vanraes, E
    Windmolders, J
    Bultheel, A
    Dierckx, P
    SIXTH INTERNATIONAL CONFERENCE ON INFORMATION VISUALISATION, PROCEEDINGS, 2002, : 639 - 643
  • [44] Construction and analysis of cubic Powell-Sabin B-splines
    Groselj, Jan
    Speleers, Hendrik
    COMPUTER AIDED GEOMETRIC DESIGN, 2017, 57 : 1 - 22
  • [45] Quadrature rules for C1 quadratic spline finite elements on the Powell-Sabin 12-split
    Eddargani, Salah
    Lyche, Tom
    Manni, Carla
    Speleers, Hendrik
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 430
  • [47] Surface compression with hierarchical Powell-Sabin B-splines
    Maes, J
    Bultheel, A
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2006, 4 (01) : 177 - 196
  • [48] Extension of B-spline Material Point Method for unstructured triangular grids using Powell-Sabin splines
    de Koster, Pascal
    Tielen, Roel
    Wobbes, Elizaveta
    Moller, Matthias
    COMPUTATIONAL PARTICLE MECHANICS, 2021, 8 (02) : 273 - 288
  • [49] Quasi-hierarchical Powell-Sabin B-splines
    Speleers, Hendrik
    Dierckx, Paul
    Vandewalle, Stefan
    COMPUTER AIDED GEOMETRIC DESIGN, 2009, 26 (02) : 174 - 191
  • [50] Numerical solution of partial differential equations with Powell-Sabin splines
    Speleers, H
    Dierckx, P
    Vandewalle, S
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 189 (1-2) : 643 - 659