Quadrature rules for C1 quadratic spline finite elements on the Powell-Sabin 12-split

被引:0
|
作者
Eddargani, Salah [1 ]
Lyche, Tom [2 ]
Manni, Carla [1 ]
Speleers, Hendrik [1 ]
机构
[1] Univ Roma Tor Vergata, Dept Math, Rome, Italy
[2] Univ Oslo, Dept Math, Oslo, Norway
关键词
C1 triangular finite element; Powell-Sabin; 12-split; Simplex splines; Weighted quadrature rules; ISOGEOMETRIC ANALYSIS; GAUSSIAN QUADRATURE;
D O I
10.1016/j.cma.2024.117196
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present quadrature rules for the space of C1 1 quadratic splines on triangulations refined according to the Powell-Sabin (PS) 12-split. Focusing on a single triangle, we first provide a symmetric 4-node quadrature rule with positive weights, which is exact on the considered spline space. For its construction we make use of a local simplex spline basis. The rule is shown to be optimal, with the minimum number of nodes. Next, in view of using C1 1 quadratic splines on triangulations in Galerkin finite element discretizations of differential problems, we design a collection of weighted quadrature rules that are helpful for an efficient formation of the linear systems arising in such discretizations. Lastly, we provide numerical comparisons with elementwise Gaussian rules and we illustrate the performance of the presented quadrature rules in the context of C1 1 quadratic spline finite elements on triangulations.
引用
收藏
页数:32
相关论文
共 23 条
  • [1] Stable Simplex Spline Bases for Quintics on the Powell-Sabin 12-Split
    Lyche, Tom
    Muntingh, Georg
    [J]. CONSTRUCTIVE APPROXIMATION, 2017, 45 (01) : 1 - 32
  • [2] On numerical quadrature for C1 quadratic Powell-Sabin 6-split macro-triangles
    Barton, Michael
    Kosinka, Jiri
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 349 : 239 - 250
  • [3] A B-SPLINE-LIKE BASIS FOR THE POWELL-SABIN 12-SPLIT BASED ON SIMPLEX SPLINES
    Cohen, Elaine
    Lyche, Tom
    Riesenfeld, Richard F.
    [J]. MATHEMATICS OF COMPUTATION, 2013, 82 (283) : 1667 - 1707
  • [4] A Hermite interpolatory subdivision scheme for C2-quintics on the Powell-Sabin 12-split
    Lyche, Tom
    Muntingh, Georg
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2014, 31 (7-8) : 464 - 474
  • [5] A bivariate C1 cubic super spline space on Powell-Sabin triangulation
    Chen, Sun-Kang
    Liu, Huan-Wen
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (05) : 1395 - 1401
  • [6] A normalized basis for C1 cubic super spline space on Powell-Sabin triangulation
    Lamnii, M.
    Mraoui, H.
    Tijini, A.
    Zidna, A.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2014, 99 : 108 - 124
  • [7] Superconvergent C1 cubic spline quasi-interpolants on Powell-Sabin partitions
    Sbibih, Driss
    Serghini, Abdelhafid
    Tijini, Ahmed
    Zidna, Ahmed
    [J]. BIT NUMERICAL MATHEMATICS, 2015, 55 (03) : 797 - 821
  • [8] C1 cubic splines on Powell-Sabin triangulations
    Groselj, Jan
    krajnc, Marjeta
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2016, 272 : 114 - 126
  • [9] Quadratic divergence-free finite elements on Powell-Sabin tetrahedral grids
    Zhang, Shangyou
    [J]. CALCOLO, 2011, 48 (03) : 211 - 244
  • [10] Bivariate C1 cubic spline space over Powell-Sabin's type-1 refinement
    School of Mathematics and Computer Science, Guangxi University for Nationalities, Nanning 530006, China
    不详
    [J]. J. Inf. Comput. Sci., 2007, 1 (151-160):