A bivariate C1 cubic super spline space on Powell-Sabin triangulation

被引:11
|
作者
Chen, Sun-Kang [1 ,2 ]
Liu, Huan-Wen [1 ]
机构
[1] Guangxi Univ Nationalities, Dept Math & Comp Sci, Nanning 530006, Guangxi, Peoples R China
[2] Honghe Univ, Dept Math, Mengzi 661100, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
super spline; macro-element; Powell-Sabin type-1 split; nodal parameters; hermite interpolation;
D O I
10.1016/j.camwa.2008.02.044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A bivariate C-1 cubic super spline is constructed on Powell-Sabin type-1 split with the additional smoothness at vertices in the original triangulation being C-2, which permits the Hermite interpolation up to the second order partial derivatives exactly on all the vertices in the original triangulation. The locally supported dual basis and computational details using derivatives around each vertex are given. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1395 / 1401
页数:7
相关论文
共 50 条
  • [1] A normalized basis for C1 cubic super spline space on Powell-Sabin triangulation
    Lamnii, M.
    Mraoui, H.
    Tijini, A.
    Zidna, A.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2014, 99 : 108 - 124
  • [2] Lagrange Interpolations by Bivariate C1 Cubic Splines on Powell-Sabin's Triangulations
    Chen, Sunkang
    Liu, Huanwen
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2010, 12 (01) : 163 - 171
  • [3] C1 cubic splines on Powell-Sabin triangulations
    Groselj, Jan
    krajnc, Marjeta
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2016, 272 : 114 - 126
  • [4] Superconvergent C1 cubic spline quasi-interpolants on Powell-Sabin partitions
    Sbibih, Driss
    Serghini, Abdelhafid
    Tijini, Ahmed
    Zidna, Ahmed
    [J]. BIT NUMERICAL MATHEMATICS, 2015, 55 (03) : 797 - 821
  • [5] Bivariate C 2 cubic spline quasi-interpolants on uniform Powell-Sabin triangulations of a rectangular domain
    Remogna, Sara
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2012, 36 (01) : 39 - 65
  • [6] Cubic spline quasi-interpolants on Powell-Sabin partitions
    Lamnii, A.
    Lamnii, M.
    Mraoui, H.
    [J]. BIT NUMERICAL MATHEMATICS, 2014, 54 (04) : 1099 - 1118
  • [7] Uniform Powell-Sabin spline wavelets
    Windmolders, J
    Vanraes, E
    Dierckx, P
    Bultheel, A
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 154 (01) : 125 - 142
  • [8] Quadrature rules for C1 quadratic spline finite elements on the Powell-Sabin 12-split
    Eddargani, Salah
    Lyche, Tom
    Manni, Carla
    Speleers, Hendrik
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 430
  • [9] On the dimension of bivariate C1 cubic spline space with homogeneous boundary conditions over a CT triangulation
    Gong, Dian-Xuan
    Lang, Feng-Gong
    [J]. INTELLIGENT STRUCTURE AND VIBRATION CONTROL, PTS 1 AND 2, 2011, 50-51 : 488 - +
  • [10] Powell-Sabin spline prewavelets on the hexagonal lattice
    Maes, Jan
    Bultheel, Adhemar
    [J]. WAVELET ANALYSIS AND APPLICATIONS, 2007, : 273 - +