A normalized basis for C1 cubic super spline space on Powell-Sabin triangulation

被引:20
|
作者
Lamnii, M. [1 ]
Mraoui, H. [1 ]
Tijini, A. [1 ]
Zidna, A. [2 ]
机构
[1] Univ Mohammed 1, Ecole Super Technol, Lab MATSI, Oujda, Morocco
[2] Univ Lorraine, LITA, Metz, France
关键词
Super spline; Powell-Sabin splines; Normalized B-splines; Blossoms; Quasi-interpolation; INTERPOLATION;
D O I
10.1016/j.matcom.2013.04.020
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we describe the construction of a suitable normalized B-spline representation for bivariate C-1 cubic super splines defined on triangulations with a Powell-Sabin refinement. The basis functions have local supports, they form a convex partition of unity, and every spline is locally controllable by means of control triangles. As application, discrete and differential quasi-interpolants of optimal approximation order are developed and numerical tests for illustrating theoretical results are presented. (C) 2013 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:108 / 124
页数:17
相关论文
共 41 条
  • [1] A bivariate C1 cubic super spline space on Powell-Sabin triangulation
    Chen, Sun-Kang
    Liu, Huan-Wen
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (05) : 1395 - 1401
  • [2] C1 cubic splines on Powell-Sabin triangulations
    Groselj, Jan
    krajnc, Marjeta
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2016, 272 : 114 - 126
  • [3] Superconvergent C1 cubic spline quasi-interpolants on Powell-Sabin partitions
    Sbibih, Driss
    Serghini, Abdelhafid
    Tijini, Ahmed
    Zidna, Ahmed
    [J]. BIT NUMERICAL MATHEMATICS, 2015, 55 (03) : 797 - 821
  • [4] A normalized basis for quintic Powell-Sabin splines
    Speleers, Hendrik
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2010, 27 (06) : 438 - 457
  • [5] Lagrange Interpolations by Bivariate C1 Cubic Splines on Powell-Sabin's Triangulations
    Chen, Sunkang
    Liu, Huanwen
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2010, 12 (01) : 163 - 171
  • [6] Cubic spline quasi-interpolants on Powell-Sabin partitions
    Lamnii, A.
    Lamnii, M.
    Mraoui, H.
    [J]. BIT NUMERICAL MATHEMATICS, 2014, 54 (04) : 1099 - 1118
  • [7] A normalized basis for condensed C1 Powell-Sabin-12 splines
    Lamnii, A.
    Lamnii, M.
    Mraoui, H.
    [J]. COMPUTER AIDED GEOMETRIC DESIGN, 2015, 34 : 5 - 20
  • [8] Spline quasi-interpolation in the Bernstein basis on the Powell-Sabin 6-split of a type-1 triangulation
    Barrera, D.
    Eddargani, S.
    Ibanez, M. J.
    Remogna, S.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 424
  • [9] Quadrature rules for C1 quadratic spline finite elements on the Powell-Sabin 12-split
    Eddargani, Salah
    Lyche, Tom
    Manni, Carla
    Speleers, Hendrik
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 430
  • [10] A normalized representation of super splines of arbitrary degree on Powell-Sabin triangulations
    Groelj, Jan
    [J]. BIT NUMERICAL MATHEMATICS, 2016, 56 (04) : 1257 - 1280