Cubic spline quasi-interpolants on Powell-Sabin partitions

被引:10
|
作者
Lamnii, A. [1 ]
Lamnii, M. [2 ]
Mraoui, H. [2 ]
机构
[1] Univ Hassan First, Fac Sci & Technol, Settat, Morocco
[2] Univ Mohammed First, Fac Sci, Oujda, Morocco
关键词
Super spline; Powell-Sabin splines; Normalized B-splines; Blossoms; Polarization identity; Quasi-interpolation; B-SPLINES; NORMALIZED BASIS; SPACE; CONSTRUCTION;
D O I
10.1007/s10543-014-0489-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
By using the polarization identity, we propose a family of quasi-interpolants based on bivariate cubic super splines defined on triangulations with a Powell-Sabin refinement. Their spline coefficients only depend on a set of local function values. The quasi-interpolants reproduce cubic polynomials and have an optimal approximation order.
引用
收藏
页码:1099 / 1118
页数:20
相关论文
共 50 条
  • [21] Three recipes for quasi-interpolation with cubic Powell-Sabin splines
    Groselj, Jan
    Speleers, Hendrik
    COMPUTER AIDED GEOMETRIC DESIGN, 2018, 67 : 47 - 70
  • [22] Near-Best Univariate Spline Discrete Quasi-Interpolants on Nonuniform Partitions
    D. Barrera
    M. J. Ibáñez
    P. Sablonnière
    D. Sbibih
    Constructive Approximation, 2008, 28 : 237 - 251
  • [23] Bivariate Simplex Spline Quasi-Interpolants
    D.Sbibih
    A.Serghini
    A.Tijini
    NumericalMathematics:Theory,MethodsandApplications, 2010, (01) : 97 - 118
  • [24] Near-Best Univariate Spline Discrete Quasi-Interpolants on Nonuniform Partitions
    Barrera, D.
    Ibanez, M. J.
    Sablonniere, P.
    Sbibih, D.
    CONSTRUCTIVE APPROXIMATION, 2008, 28 (03) : 237 - 251
  • [25] A Family of Spline Quasi-Interpolants on the Sphere
    O. Nouisser
    D. Sbibih
    Paul Sablonnière
    Numerical Algorithms, 2003, 33 : 399 - 413
  • [26] Bivariate Simplex Spline Quasi-Interpolants
    Sbibih, D.
    Serghini, A.
    Tijini, A.
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2010, 3 (01) : 97 - 118
  • [27] A family of spline quasi-interpolants on the sphere
    Nouisser, O
    Sbibih, D
    Sablonnière, P
    NUMERICAL ALGORITHMS, 2003, 33 (1-4) : 399 - 413
  • [28] A bivariate C1 cubic super spline space on Powell-Sabin triangulation
    Chen, Sun-Kang
    Liu, Huan-Wen
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (05) : 1395 - 1401
  • [29] A new B-spline representation for cubic splines over Powell-Sabin triangulations
    Speleers, Hendrik
    COMPUTER AIDED GEOMETRIC DESIGN, 2015, 37 : 42 - 56
  • [30] A geometric criterion for the convexity of Powell-Sabin interpolants and its multivariate generalization
    Bangert, C
    Prautzsch, H
    COMPUTER AIDED GEOMETRIC DESIGN, 1999, 16 (06) : 529 - 538