Sunspot extraction and hemispheric statistics of YNAO sunspot drawings using deep learning

被引:0
|
作者
Zhaoshuai Yang
Yunfei Yang
Song Feng
Bo Liang
Wei Dai
Jianping Xiong
机构
[1] Kunming University of Science and Technology,Faculty of Information Engineering and Automation/Yunnan Key Laboratory of Computer Technology Application
[2] Yunnan Astronomical Observatories,undefined
来源
关键词
Sunspot drawings; Deep learning; Hemisphere; Sunspot number; Sunspot area;
D O I
暂无
中图分类号
学科分类号
摘要
Sunspot drawings around the globe provide long historical records for understanding the long-term trends in the solar activity cycle. Yunnan Astronomical Observatory (YNAO) in China contributes to the relatively continuous sunspot drawings from 1957 to 2015. This paper proposes a new deep learning method named SPR-mask to extract pores, spots, umbrae and penumbrae in the YNAO sunspot drawings. SPR-mask consists of three parts: backbone, shared head and mask branch. It especially adopts a scale-aware attention network (SAAN) and a PointRend module in the mask branch to improve the accuracy of target edge segmentation. Besides that, each sunspot belonging to the northern or southern (N-S) hemisphere is determined by transforming its cartesian coordinates to spherical coordinates after extracting P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P$\end{document}, B0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B_{0}$\end{document} and L0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{0}$\end{document} handwritten in sunspot drawings using a revised Lenet-5 deep learning method. The precision, recall and AP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$AP$\end{document} of SPR-mask are 0.92, 0.93, and 0.92, respectively. The test results show the SPR-mask method has a good performance. The numbers and areas of pores, spots, umbrae and penumbrae for the N-S hemisphere are presented and analyzed separately. The YNAO data are also compared with Royal Greenwich Observatory (RGO), Kanzelhöhe Observatory (KSO) and Purple Mountain Astronomical Observatory (PMO) data. The results show similar trends, high correlations, and N-S asymmetries. All data of YNAO are publicly shared at https://github.com/yzs64/YNAO_sd/, which are abundant and complementary to the other sunspot catalogs in the world.
引用
收藏
相关论文
共 50 条
  • [1] Sunspot extraction and hemispheric statistics of YNAO sunspot drawings using deep learning
    Yang, Zhaoshuai
    Yang, Yunfei
    Feng, Song
    Liang, Bo
    Dai, Wei
    Xiong, Jianping
    ASTROPHYSICS AND SPACE SCIENCE, 2023, 368 (01)
  • [2] Sunspots Extraction in PMO Sunspot Drawings Based on Deep Learning
    Xu, Xiao
    Yang, Yunfei
    Zhou, Tuanhui
    Feng, Song
    Liang, Bo
    Dai, Wei
    Bai, Xianyong
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2021, 133 (1024)
  • [3] Sunspot drawings at Kodaikanal Observatory: a representative results on hemispheric sunspot numbers and area measurements
    Ravindra, B.
    Pichamani, Kumaravel
    Selvendran, R.
    Samuel, Joyce
    Kumar, Praveen
    Jassoria, Nancy
    Navneeth, R. S.
    ASTROPHYSICS AND SPACE SCIENCE, 2020, 365 (01)
  • [4] Sunspot drawings at Kodaikanal Observatory: a representative results on hemispheric sunspot numbers and area measurements
    B. Ravindra
    Kumaravel Pichamani
    R. Selvendran
    Joyce Samuel
    Praveen Kumar
    Nancy Jassoria
    R. S. Navneeth
    Astrophysics and Space Science, 2020, 365
  • [5] Extraction of Sunspots from Chinese Sunspot Drawings Based on Semisupervised Learning
    Dong, Qianqian
    Yang, Yunfei
    Feng, Song
    Dai, Wei
    Liang, Bo
    Xiong, Jianping
    ASTROPHYSICAL JOURNAL, 2024, 970 (02):
  • [6] Sunspot drawings handwritten character recognition method based on deep learning
    Zheng, Sheng
    Zeng, Xiangyun
    Lin, Ganghua
    Zhao, Cui
    Feng, Yongli
    Tao, Jinping
    Zhu, Daoyuan
    Xiong, Li
    NEW ASTRONOMY, 2016, 45 : 54 - 59
  • [7] Generation of Modern Satellite Data from Galileo Sunspot Drawings in 1612 by Deep Learning
    Lee, Harim
    Park, Eunsu
    Moon, Yong-Jae
    ASTROPHYSICAL JOURNAL, 2021, 907 (02):
  • [8] Forecasting Sunspot Time Series Using Deep Learning Methods
    Zeydin Pala
    Ramazan Atici
    Solar Physics, 2019, 294
  • [9] Forecasting Sunspot Time Series Using Deep Learning Methods
    Pala, Zeydin
    Atici, Ramazan
    SOLAR PHYSICS, 2019, 294 (05)
  • [10] Group Sunspot Numbers: A New Reconstruction of Sunspot Activity Variations from Historical Sunspot Records Using Algorithms from Machine Learning
    Víctor Manuel Velasco Herrera
    Willie Soon
    Douglas V. Hoyt
    Judit Muraközy
    Solar Physics, 2022, 297