Sunspot extraction and hemispheric statistics of YNAO sunspot drawings using deep learning

被引:0
|
作者
Zhaoshuai Yang
Yunfei Yang
Song Feng
Bo Liang
Wei Dai
Jianping Xiong
机构
[1] Kunming University of Science and Technology,Faculty of Information Engineering and Automation/Yunnan Key Laboratory of Computer Technology Application
[2] Yunnan Astronomical Observatories,undefined
来源
关键词
Sunspot drawings; Deep learning; Hemisphere; Sunspot number; Sunspot area;
D O I
暂无
中图分类号
学科分类号
摘要
Sunspot drawings around the globe provide long historical records for understanding the long-term trends in the solar activity cycle. Yunnan Astronomical Observatory (YNAO) in China contributes to the relatively continuous sunspot drawings from 1957 to 2015. This paper proposes a new deep learning method named SPR-mask to extract pores, spots, umbrae and penumbrae in the YNAO sunspot drawings. SPR-mask consists of three parts: backbone, shared head and mask branch. It especially adopts a scale-aware attention network (SAAN) and a PointRend module in the mask branch to improve the accuracy of target edge segmentation. Besides that, each sunspot belonging to the northern or southern (N-S) hemisphere is determined by transforming its cartesian coordinates to spherical coordinates after extracting P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P$\end{document}, B0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B_{0}$\end{document} and L0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{0}$\end{document} handwritten in sunspot drawings using a revised Lenet-5 deep learning method. The precision, recall and AP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$AP$\end{document} of SPR-mask are 0.92, 0.93, and 0.92, respectively. The test results show the SPR-mask method has a good performance. The numbers and areas of pores, spots, umbrae and penumbrae for the N-S hemisphere are presented and analyzed separately. The YNAO data are also compared with Royal Greenwich Observatory (RGO), Kanzelhöhe Observatory (KSO) and Purple Mountain Astronomical Observatory (PMO) data. The results show similar trends, high correlations, and N-S asymmetries. All data of YNAO are publicly shared at https://github.com/yzs64/YNAO_sd/, which are abundant and complementary to the other sunspot catalogs in the world.
引用
收藏
相关论文
共 50 条
  • [31] Fingerprint Minutiae Extraction using Deep Learning
    Darlow, Luke Nicholas
    Rosman, Benjamin
    2017 IEEE INTERNATIONAL JOINT CONFERENCE ON BIOMETRICS (IJCB), 2017, : 22 - 30
  • [32] Comparative Analysis of Prediction of Coronal Mass Ejections (CME) based on Sunspot Activities Using Various Machine Learning Models
    Mahdi, Mohammad Mahruf
    Tipu, M. M. Anisuzzaman Nour
    Halder, Chayan
    Rahman, Ken Fahmidur
    2019 1ST INTERNATIONAL CONFERENCE ON ROBOTICS, ELECTRICAL AND SIGNAL PROCESSING TECHNIQUES (ICREST), 2019, : 588 - 591
  • [33] Generating psychological analysis tables for children's drawings using deep learning
    Lee, Moonyoung
    Kim, Youngho
    Kim, Young-Kuk
    DATA & KNOWLEDGE ENGINEERING, 2024, 149
  • [34] Automatic segmentation of hemispheric CSF on MRI using deep learning: Quantifying cerebral edema following large hemispheric infarction
    Cui, Junzhao
    Yang, Jingyi
    Wang, Ye
    Ma, Meixin
    Zhang, Ning
    Wang, Rui
    Zhou, Biyi
    Meng, Chaoyue
    Yang, Peng
    Yang, Jianing
    Xu, Lei
    Tan, Guojun
    Liu, Lidou
    Zhen, Junli
    Guo, Li
    Liu, Xiaoyun
    HELIYON, 2024, 10 (05)
  • [35] Feature Extraction of Plant Leaf Using Deep Learning
    Ahmad, Muhammad Umair
    Ashiq, Sidra
    Badshah, Gran
    Khan, Ali Haider
    Hussain, Muzammil
    COMPLEXITY, 2022, 2022
  • [36] Keyphrase extraction using deep and wide learning features
    Zu, Xian
    Xie, Fei
    INTELLIGENT DATA ANALYSIS, 2022, 26 (06) : 1643 - 1660
  • [37] Joint Extraction of Entities and Relations Using Reinforcement Learning and Deep Learning
    Feng, Yuntian
    Zhang, Hongjun
    Hao, Wenning
    Chen, Gang
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2017, 2017
  • [38] Evaluation of F10.7, Sunspot Number and Photon Flux Data for Ionosphere TEC Modeling and Prediction Using Machine Learning Techniques
    Machado da Silva Benoit, Andres Gilberto
    Petry, Adriano
    ATMOSPHERE, 2021, 12 (09)
  • [39] Neuropathology Detector in EEG using Higher Order Statistics and Deep Learning
    Seijas, Cesar
    Villazana, Sergio
    Montilla, Guillermo
    Perez, Egilda
    Montilla, Ricardo
    INGENIERIA UC, 2021, 28 (01): : 141 - 151
  • [40] Using Deep Learning Techniques for Authentication of Amadeo de Souza Cardoso Paintings and Drawings
    Chen, Ailin
    Jesus, Rui
    Villarigues, Marcia
    PROGRESS IN ARTIFICIAL INTELLIGENCE, PT II, 2019, 11805 : 172 - 183