Sunspot extraction and hemispheric statistics of YNAO sunspot drawings using deep learning

被引:0
|
作者
Zhaoshuai Yang
Yunfei Yang
Song Feng
Bo Liang
Wei Dai
Jianping Xiong
机构
[1] Kunming University of Science and Technology,Faculty of Information Engineering and Automation/Yunnan Key Laboratory of Computer Technology Application
[2] Yunnan Astronomical Observatories,undefined
来源
关键词
Sunspot drawings; Deep learning; Hemisphere; Sunspot number; Sunspot area;
D O I
暂无
中图分类号
学科分类号
摘要
Sunspot drawings around the globe provide long historical records for understanding the long-term trends in the solar activity cycle. Yunnan Astronomical Observatory (YNAO) in China contributes to the relatively continuous sunspot drawings from 1957 to 2015. This paper proposes a new deep learning method named SPR-mask to extract pores, spots, umbrae and penumbrae in the YNAO sunspot drawings. SPR-mask consists of three parts: backbone, shared head and mask branch. It especially adopts a scale-aware attention network (SAAN) and a PointRend module in the mask branch to improve the accuracy of target edge segmentation. Besides that, each sunspot belonging to the northern or southern (N-S) hemisphere is determined by transforming its cartesian coordinates to spherical coordinates after extracting P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P$\end{document}, B0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B_{0}$\end{document} and L0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{0}$\end{document} handwritten in sunspot drawings using a revised Lenet-5 deep learning method. The precision, recall and AP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$AP$\end{document} of SPR-mask are 0.92, 0.93, and 0.92, respectively. The test results show the SPR-mask method has a good performance. The numbers and areas of pores, spots, umbrae and penumbrae for the N-S hemisphere are presented and analyzed separately. The YNAO data are also compared with Royal Greenwich Observatory (RGO), Kanzelhöhe Observatory (KSO) and Purple Mountain Astronomical Observatory (PMO) data. The results show similar trends, high correlations, and N-S asymmetries. All data of YNAO are publicly shared at https://github.com/yzs64/YNAO_sd/, which are abundant and complementary to the other sunspot catalogs in the world.
引用
收藏
相关论文
共 50 条
  • [41] Deep Feature Extraction for Detection of COVID-19 Using Deep Learning
    Rafiq, Arisa
    Imran, Muhammad
    Alhajlah, Mousa
    Mahmood, Awais
    Karamat, Tehmina
    Haneef, Muhammad
    Alhajlah, Ashwaq
    ELECTRONICS, 2022, 11 (23)
  • [42] Tolerance Information Extraction for Mechanical Engineering Drawings - A Digital Image Processing and Deep Learning-based Model
    Xu, Yuanping
    Zhang, Chaolong
    Xu, Zhijie
    Kong, Chao
    Tang, Dan
    Deng, Xin
    Li, Tukun
    Jin, Jin
    CIRP JOURNAL OF MANUFACTURING SCIENCE AND TECHNOLOGY, 2024, 50 : 55 - 64
  • [43] Vietnamese Keyword Extraction Using Hybrid Deep Learning Methods
    Bui Thanh Hung
    PROCEEDINGS OF 2018 5TH NAFOSTED CONFERENCE ON INFORMATION AND COMPUTER SCIENCE (NICS 2018), 2018, : 412 - 417
  • [44] ECG noise classification using deep learning with feature extraction
    Vibinkumar Vijayakumar
    Shaik Ummar
    Thomas J. Varghese
    Anu Elizabeth Shibu
    Signal, Image and Video Processing, 2022, 16 : 2287 - 2293
  • [45] Genre Classification using Feature Extraction and Deep Learning Techniques
    Kumar, Akshi
    Rajpal, Arjun
    Rathore, Dushyant
    PROCEEDINGS OF 2018 10TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SYSTEMS ENGINEERING (KSE), 2018, : 175 - 180
  • [46] Molecular Structure Extraction from Documents Using Deep Learning
    Staker, Joshua
    Marshall, Kyle
    Abel, Robert
    McQuaw, Carolyn M.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (03) : 1017 - 1029
  • [47] Examination of myocardial extraction using Semantic Segmentation by Deep learning
    Okada, K.
    Kikuchi, A.
    Kawakami, T.
    Honma, Y.
    Nakajima, K.
    Yoneyama, H.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (SUPPL 1) : S875 - S875
  • [48] Feature extraction using Deep Learning for Intrusion Detection System
    Ishaque, Mohammed
    Hudec, Ladislav
    2019 2ND INTERNATIONAL CONFERENCE ON COMPUTER APPLICATIONS & INFORMATION SECURITY (ICCAIS), 2019,
  • [49] Algorithm Selection Using Deep Learning Without Feature Extraction
    Alissa, Mohamad
    Sim, Kevin
    Hart, Emma
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19), 2019, : 198 - 206
  • [50] Web Page Information Extraction System by Using Deep Learning
    Pakyurek, Muhammet
    Sezgin, Mehmet Selman
    Kulac, Selman
    2019 4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2019, : 361 - 365