Sunspot extraction and hemispheric statistics of YNAO sunspot drawings using deep learning

被引:0
|
作者
Zhaoshuai Yang
Yunfei Yang
Song Feng
Bo Liang
Wei Dai
Jianping Xiong
机构
[1] Kunming University of Science and Technology,Faculty of Information Engineering and Automation/Yunnan Key Laboratory of Computer Technology Application
[2] Yunnan Astronomical Observatories,undefined
来源
关键词
Sunspot drawings; Deep learning; Hemisphere; Sunspot number; Sunspot area;
D O I
暂无
中图分类号
学科分类号
摘要
Sunspot drawings around the globe provide long historical records for understanding the long-term trends in the solar activity cycle. Yunnan Astronomical Observatory (YNAO) in China contributes to the relatively continuous sunspot drawings from 1957 to 2015. This paper proposes a new deep learning method named SPR-mask to extract pores, spots, umbrae and penumbrae in the YNAO sunspot drawings. SPR-mask consists of three parts: backbone, shared head and mask branch. It especially adopts a scale-aware attention network (SAAN) and a PointRend module in the mask branch to improve the accuracy of target edge segmentation. Besides that, each sunspot belonging to the northern or southern (N-S) hemisphere is determined by transforming its cartesian coordinates to spherical coordinates after extracting P\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$P$\end{document}, B0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$B_{0}$\end{document} and L0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L_{0}$\end{document} handwritten in sunspot drawings using a revised Lenet-5 deep learning method. The precision, recall and AP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$AP$\end{document} of SPR-mask are 0.92, 0.93, and 0.92, respectively. The test results show the SPR-mask method has a good performance. The numbers and areas of pores, spots, umbrae and penumbrae for the N-S hemisphere are presented and analyzed separately. The YNAO data are also compared with Royal Greenwich Observatory (RGO), Kanzelhöhe Observatory (KSO) and Purple Mountain Astronomical Observatory (PMO) data. The results show similar trends, high correlations, and N-S asymmetries. All data of YNAO are publicly shared at https://github.com/yzs64/YNAO_sd/, which are abundant and complementary to the other sunspot catalogs in the world.
引用
收藏
相关论文
共 50 条
  • [21] Deep-learning Reconstruction of Sunspot Vector Magnetic Fields for Forecasting Solar Storms
    Dhuri, Dattaraj B.
    Bhattacharjee, Shamik
    Hanasoge, Shravan M.
    Mahapatra, Sashi Kiran
    ASTROPHYSICAL JOURNAL, 2022, 939 (02):
  • [22] EMD and LSTM Hybrid Deep Learning Model for Predicting Sunspot Number Time Series with a Cyclic Pattern
    Lee, Taesam
    SOLAR PHYSICS, 2020, 295 (06)
  • [23] EMD and LSTM Hybrid Deep Learning Model for Predicting Sunspot Number Time Series with a Cyclic Pattern
    Taesam Lee
    Solar Physics, 2020, 295
  • [24] Deep learning approaches to pattern extraction and recognition in paintings and drawings: an overview
    Giovanna Castellano
    Gennaro Vessio
    Neural Computing and Applications, 2021, 33 : 12263 - 12282
  • [25] Deep learning approaches to pattern extraction and recognition in paintings and drawings: an overview
    Castellano, Giovanna
    Vessio, Gennaro
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (19): : 12263 - 12282
  • [26] Sunspot Prediction by a Time Delay Line Recurrent Fuzzy Neural Network Using Emotional Learning
    Moghaddam, Javad Davoudi
    Mosallanezhad, Amin
    Teshnehlab, Mohammad
    2013 13TH IRANIAN CONFERENCE ON FUZZY SYSTEMS (IFSC), 2013,
  • [27] Automatic short-term solar flare prediction using machine learning and sunspot associations
    Qahwaji, R.
    Colak, T.
    SOLAR PHYSICS, 2007, 241 (01) : 195 - 211
  • [28] Automatic Short-Term Solar Flare Prediction Using Machine Learning and Sunspot Associations
    R. Qahwaji
    T. Colak
    Solar Physics, 2007, 241 : 195 - 211
  • [29] Advertisement Extraction Using Deep Learning
    Madi, Boraq
    Alaasam, Reem
    Droby, Ahmad
    El-Sana, Jihad
    DOCUMENT ANALYSIS AND RECOGNITION, ICDAR 2021, PT II, 2021, 12917 : 81 - 97
  • [30] Movies Tags Extraction Using Deep Learning
    Khan, U. A.
    Ejaz, N.
    Martinez-del-Amor, M. A.
    Sparenberg, H.
    2017 14TH IEEE INTERNATIONAL CONFERENCE ON ADVANCED VIDEO AND SIGNAL BASED SURVEILLANCE (AVSS), 2017,