Smooth approximations of the conical Kähler–Ricci flows

被引:0
|
作者
Yuanqi Wang
机构
[1] University of California at Santa Barbara,Department of Mathematics
来源
Mathematische Annalen | 2016年 / 365卷
关键词
Soliton; Line Bundle; Local Cutting; Einstein Metrics; Model Metrics;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we show that the conical Kähler–Ricci flows introduced in Chen and Wang (Bessel functions, Heat kernel and the conical Kähler–Ricci flow. J. Funct. Anal. 269(2), 2013) exist for all time t∈[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in [0,\infty )$$\end{document} in the weak sense as in Definition 1.2. As a key ingredient of the proof, we show that a conical Kähler–Ricci flow is actually the limit of a sequence of smooth Kähler–Ricci flows.
引用
收藏
页码:835 / 856
页数:21
相关论文
共 50 条
  • [41] Convergence of the Generalized Kähler-Ricci Flow
    Liu J.
    Wang Y.
    Communications in Mathematics and Statistics, 2015, 3 (2) : 239 - 261
  • [42] On Gradient Shrinking and Expanding Kähler–Ricci Solitons
    Liangdi Zhang
    Mediterranean Journal of Mathematics, 2022, 19
  • [43] The Modified Cusp Kähler–Ricci Flow and Soliton
    Pan Zhang
    The Journal of Geometric Analysis, 2021, 31 : 10402 - 10435
  • [44] Gap theorems for Kähler-Ricci solitons
    Haozhao Li
    Archiv der Mathematik, 2008, 91 : 187 - 192
  • [45] Uniqueness of Kähler Ricci Shrinkers on Toric Orbifolds
    Li, Yu
    Zhang, Wenjia
    JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (05)
  • [46] On the Curvature of Kähler Manifolds with Zero Ricci Tensor
    V. N. Kokarev
    Mathematical Notes, 2019, 105 : 528 - 534
  • [47] Kähler–Ricci flow on blowups along submanifolds
    Bin Guo
    Mathematische Annalen, 2019, 375 : 1147 - 1167
  • [48] A Note on Kähler–Ricci Flow on Fano Threefolds
    Minghao Miao
    Gang Tian
    Peking Mathematical Journal, 2025, 8 (1) : 191 - 199
  • [49] Modified Kähler–Ricci flow on projective bundles
    Ryosuke Takahashi
    Mathematische Zeitschrift, 2015, 281 : 395 - 413
  • [50] The Kähler–Ricci flow with positive bisectional curvature
    D.H. Phong
    Jian Song
    Jacob Sturm
    Ben Weinkove
    Inventiones mathematicae, 2008, 173 : 651 - 665