Smooth approximations of the conical Kähler–Ricci flows

被引:0
|
作者
Yuanqi Wang
机构
[1] University of California at Santa Barbara,Department of Mathematics
来源
Mathematische Annalen | 2016年 / 365卷
关键词
Soliton; Line Bundle; Local Cutting; Einstein Metrics; Model Metrics;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we show that the conical Kähler–Ricci flows introduced in Chen and Wang (Bessel functions, Heat kernel and the conical Kähler–Ricci flow. J. Funct. Anal. 269(2), 2013) exist for all time t∈[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in [0,\infty )$$\end{document} in the weak sense as in Definition 1.2. As a key ingredient of the proof, we show that a conical Kähler–Ricci flow is actually the limit of a sequence of smooth Kähler–Ricci flows.
引用
收藏
页码:835 / 856
页数:21
相关论文
共 50 条
  • [31] The Kähler–Ricci flow on Fano bundles
    Xin Fu
    Shijin Zhang
    Mathematische Zeitschrift, 2017, 286 : 1605 - 1626
  • [32] Hyperbolic Khler-Ricci flow
    XU Chao Department of Mathematics
    Science China(Mathematics), 2010, 53 (11) : 3027 - 3036
  • [33] Asymptotic stability for Kähler–Ricci solitons
    Ryosuke Takahashi
    Mathematische Zeitschrift, 2015, 281 : 1021 - 1034
  • [34] Hyperbolic Kähler-Ricci flow
    Chao Xu
    Science China Mathematics, 2010, 53 : 3027 - 3036
  • [35] A Gradient Estimate for the Ricci–Kähler Flow
    Bennett Chow
    Annals of Global Analysis and Geometry, 2001, 19 : 321 - 325
  • [36] On Ricci flows with closed and smooth tangent flows
    Chan, Pak-Yeung
    Ma, Zilu
    Zhang, Yongjia
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2024, 63 (07)
  • [37] Conical Kähler–Einstein Metrics Revisited
    Chi Li
    Song Sun
    Communications in Mathematical Physics, 2014, 331 : 927 - 973
  • [38] Bounding Diameter of Conical Kähler Metric
    Yan Li
    The Journal of Geometric Analysis, 2018, 28 : 950 - 982
  • [39] Ricci flow on Kähler-Einstein surfaces
    X.X. Chen
    G. Tian
    Inventiones mathematicae, 2002, 147 : 487 - 544
  • [40] The Kähler Ricci flow on Fano surfaces (I)
    Xiuxiong Chen
    Bing Wang
    Mathematische Zeitschrift, 2012, 270 : 577 - 587