A Gradient Estimate for the Ricci–Kähler Flow

被引:0
|
作者
Bennett Chow
机构
[1] University of Minnesota,School of Mathematics
[2] 127 Vincent Hall,undefined
来源
关键词
gradient estimate; Ricci flow; Ricci–Kähler flow;
D O I
暂无
中图分类号
学科分类号
摘要
We show that for a complete solution to theRicci–Kähler flow where the curvature, the potential andscalar curvature functions and their gradients are bounded depending ontime, the absolute value of both the scalar curvature and the gradientsquared of a modified potential function are bounded byC/t.
引用
收藏
页码:321 / 325
页数:4
相关论文
共 50 条
  • [1] Remarks on Kähler Ricci Flow
    Xiuxiong Chen
    Bing Wang
    Journal of Geometric Analysis, 2010, 20 : 335 - 353
  • [2] A modified Kähler–Ricci flow
    Zhou Zhang
    Mathematische Annalen, 2009, 345 : 559 - 579
  • [3] A note on Kähler–Ricci flow
    Chengjie Yu
    Mathematische Zeitschrift, 2012, 272 : 191 - 201
  • [4] Cusp Kähler–Ricci flow on compact Kähler manifolds
    Jiawei Liu
    Xi Zhang
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 289 - 306
  • [5] On Gradient Shrinking and Expanding Kähler–Ricci Solitons
    Liangdi Zhang
    Mediterranean Journal of Mathematics, 2022, 19
  • [6] Some progresses on Kähler–Ricci flow
    Gang Tian
    Bollettino dell'Unione Matematica Italiana, 2019, 12 : 251 - 263
  • [7] The Kähler–Ricci flow through singularities
    Jian Song
    Gang Tian
    Inventiones mathematicae, 2017, 207 : 519 - 595
  • [8] On the convergence of a modified Kähler–Ricci flow
    Yuan Yuan
    Mathematische Zeitschrift, 2011, 268 : 281 - 289
  • [9] Stability of Kähler-Ricci Flow
    Xiuxiong Chen
    Haozhao Li
    Journal of Geometric Analysis, 2010, 20 : 306 - 334
  • [10] On a twisted conical Kähler–Ricci flow
    Yashan Zhang
    Annals of Global Analysis and Geometry, 2019, 55 : 69 - 98