A Gradient Estimate for the Ricci–Kähler Flow

被引:0
|
作者
Bennett Chow
机构
[1] University of Minnesota,School of Mathematics
[2] 127 Vincent Hall,undefined
来源
关键词
gradient estimate; Ricci flow; Ricci–Kähler flow;
D O I
暂无
中图分类号
学科分类号
摘要
We show that for a complete solution to theRicci–Kähler flow where the curvature, the potential andscalar curvature functions and their gradients are bounded depending ontime, the absolute value of both the scalar curvature and the gradientsquared of a modified potential function are bounded byC/t.
引用
收藏
页码:321 / 325
页数:4
相关论文
共 50 条
  • [41] Diameter estimates for long-time solutions of the Kähler–Ricci flow
    Wangjian Jian
    Jian Song
    Geometric and Functional Analysis, 2022, 32 : 1335 - 1356
  • [42] The Khler-Ricci Flow on Khler Manifolds with 2-Non-negative Traceless Bisectional Curvature Operator
    Xiuxiong CHEN Haozhao LI Department of Mathematics
    ChineseAnnalsofMathematics, 2008, (05) : 543 - 556
  • [43] Global Kähler–Ricci flow on complete non-compact manifolds
    Li Ma
    Annali di Matematica Pura ed Applicata (1923 -), 2016, 195 : 1011 - 1019
  • [44] The Kähler-Ricci flow on Kähler manifolds with 2-non-negative traceless bisectional curvature operator
    Xiuxiong Chen
    Haozhao Li
    Chinese Annals of Mathematics, Series B, 2008, 29 : 543 - 556
  • [45] On the Collapsing Rate of the Kähler–Ricci Flow with Finite-Time Singularity
    Frederick Tsz-Ho Fong
    The Journal of Geometric Analysis, 2015, 25 : 1098 - 1107
  • [46] Ricci-flat Kähler metrics on crepant resolutions of Kähler cones
    Craig van Coevering
    Mathematische Annalen, 2010, 347 : 581 - 611
  • [47] Asymptotic stability for Kähler–Ricci solitons
    Ryosuke Takahashi
    Mathematische Zeitschrift, 2015, 281 : 1021 - 1034
  • [48] A New Complete Two-Dimensional Shrinking Gradient Kähler-Ricci Soliton
    Richard H. Bamler
    Charles Cifarelli
    Ronan J. Conlon
    Alix Deruelle
    Geometric and Functional Analysis, 2024, 34 : 377 - 392
  • [49] A New Complete Two-Dimensional Shrinking Gradient Kähler-Ricci Soliton
    Bamler, Richard H.
    Cifarelli, Charles
    Conlon, Ronan J.
    Deruelle, Alix
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2024, 34 (02) : 377 - 392
  • [50] Geometric Regularity of Blow-up Limits of the Kähler-Ricci Flow
    Hallgren, Max
    Jian, Wangjian
    Song, Jian
    Tian, Gang
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2024, 34 (06) : 1899 - 1972