A note on Kähler–Ricci flow

被引:0
|
作者
Chengjie Yu
机构
[1] Shantou University,Department of Mathematics
来源
Mathematische Zeitschrift | 2012年 / 272卷
关键词
Kähler–Ricci flow; Long time existence; Primary 53C44; Secondary 58J35;
D O I
暂无
中图分类号
学科分类号
摘要
Let g(t) with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${t\in [0,T)}$$\end{document} be a complete solution to the Kähler–Ricci flow: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{d}{dt}g_{i\bar j}=-R_{i\bar j}}$$\end{document} where T may be ∞. In this article, we show that the curvature of g(t) is uniformly bounded if the solution g(t) is uniformly equivalent. This result is stronger than the main result in Šešum (Am J Math 127(6):1315–1324, 2005) within the category of Kähler–Ricci flow.
引用
收藏
页码:191 / 201
页数:10
相关论文
共 50 条
  • [1] A Note on Kähler–Ricci Flow on Fano Threefolds
    Minghao Miao
    Gang Tian
    Peking Mathematical Journal, 2025, 8 (1) : 191 - 199
  • [2] A NOTE ON CONICAL KHLER-RICCI FLOW ON MINIMAL ELLIPTIC KHLER SURFACES
    张雅山
    Acta Mathematica Scientia, 2018, 38 (01) : 169 - 176
  • [3] Remarks on Kähler Ricci Flow
    Xiuxiong Chen
    Bing Wang
    Journal of Geometric Analysis, 2010, 20 : 335 - 353
  • [4] A modified Kähler–Ricci flow
    Zhou Zhang
    Mathematische Annalen, 2009, 345 : 559 - 579
  • [5] Cusp Kähler–Ricci flow on compact Kähler manifolds
    Jiawei Liu
    Xi Zhang
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 289 - 306
  • [6] Some progresses on Kähler–Ricci flow
    Gang Tian
    Bollettino dell'Unione Matematica Italiana, 2019, 12 : 251 - 263
  • [7] The Kähler–Ricci flow through singularities
    Jian Song
    Gang Tian
    Inventiones mathematicae, 2017, 207 : 519 - 595
  • [8] On the convergence of a modified Kähler–Ricci flow
    Yuan Yuan
    Mathematische Zeitschrift, 2011, 268 : 281 - 289
  • [9] Stability of Kähler-Ricci Flow
    Xiuxiong Chen
    Haozhao Li
    Journal of Geometric Analysis, 2010, 20 : 306 - 334
  • [10] On a twisted conical Kähler–Ricci flow
    Yashan Zhang
    Annals of Global Analysis and Geometry, 2019, 55 : 69 - 98