A note on Kähler–Ricci flow

被引:0
|
作者
Chengjie Yu
机构
[1] Shantou University,Department of Mathematics
来源
Mathematische Zeitschrift | 2012年 / 272卷
关键词
Kähler–Ricci flow; Long time existence; Primary 53C44; Secondary 58J35;
D O I
暂无
中图分类号
学科分类号
摘要
Let g(t) with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${t\in [0,T)}$$\end{document} be a complete solution to the Kähler–Ricci flow: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{d}{dt}g_{i\bar j}=-R_{i\bar j}}$$\end{document} where T may be ∞. In this article, we show that the curvature of g(t) is uniformly bounded if the solution g(t) is uniformly equivalent. This result is stronger than the main result in Šešum (Am J Math 127(6):1315–1324, 2005) within the category of Kähler–Ricci flow.
引用
收藏
页码:191 / 201
页数:10
相关论文
共 50 条
  • [21] The Kähler–Ricci flow with positive bisectional curvature
    D.H. Phong
    Jian Song
    Jacob Sturm
    Ben Weinkove
    Inventiones mathematicae, 2008, 173 : 651 - 665
  • [22] The Kähler–Ricci flow on surfaces of positive Kodaira dimension
    Jian Song
    Gang Tian
    Inventiones mathematicae, 2007, 170 : 609 - 653
  • [23] Collapsing limits of the Kähler–Ricci flow and the continuity method
    Yashan Zhang
    Mathematische Annalen, 2019, 374 : 331 - 360
  • [24] Stability of Kähler-Ricci flow on a Fano manifold
    Xiaohua Zhu
    Mathematische Annalen, 2013, 356 : 1425 - 1454
  • [25] Special Kähler–Ricci potentials and Ricci solitons
    Gideon Maschler
    Annals of Global Analysis and Geometry, 2008, 34 : 367 - 380
  • [26] On the Kähler-Ricci Flow on Projective Manifolds of General Type
    Gang Tian*
    Zhou Zhang
    Chinese Annals of Mathematics, Series B, 2006, 27 : 179 - 192
  • [27] Instantaneously complete Chern–Ricci flow and Kähler–Einstein metrics
    Shaochuang Huang
    Man-Chun Lee
    Luen-Fai Tam
    Calculus of Variations and Partial Differential Equations, 2019, 58
  • [28] Infinite-Time Singularity Type of the Kähler–Ricci Flow
    Yashan Zhang
    The Journal of Geometric Analysis, 2020, 30 : 2092 - 2104
  • [29] A Scalar Curvature Bound Along the Conical Kähler–Ricci Flow
    Gregory Edwards
    The Journal of Geometric Analysis, 2018, 28 : 225 - 252
  • [30] Metric contraction of the cone divisor by the conical Kähler–Ricci Flow
    Gregory Edwards
    Mathematische Annalen, 2019, 374 : 1525 - 1557