A note on Kähler–Ricci flow

被引:0
|
作者
Chengjie Yu
机构
[1] Shantou University,Department of Mathematics
来源
Mathematische Zeitschrift | 2012年 / 272卷
关键词
Kähler–Ricci flow; Long time existence; Primary 53C44; Secondary 58J35;
D O I
暂无
中图分类号
学科分类号
摘要
Let g(t) with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${t\in [0,T)}$$\end{document} be a complete solution to the Kähler–Ricci flow: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{d}{dt}g_{i\bar j}=-R_{i\bar j}}$$\end{document} where T may be ∞. In this article, we show that the curvature of g(t) is uniformly bounded if the solution g(t) is uniformly equivalent. This result is stronger than the main result in Šešum (Am J Math 127(6):1315–1324, 2005) within the category of Kähler–Ricci flow.
引用
收藏
页码:191 / 201
页数:10
相关论文
共 50 条