The Kähler–Ricci flow on surfaces of positive Kodaira dimension

被引:0
|
作者
Jian Song
Gang Tian
机构
[1] Johns Hopkins University,Department of Mathematics
[2] Princeton University,Department of Mathematics
来源
Inventiones mathematicae | 2007年 / 170卷
关键词
Line Bundle; Scalar Curvature; Canonical Model; Einstein Metrics; Elliptic Surface;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:609 / 653
页数:44
相关论文
共 50 条
  • [1] The Kahler-Ricci flow on surfaces of positive Kodaira dimension
    Song, Jian
    Tian, Gang
    INVENTIONES MATHEMATICAE, 2007, 170 (03) : 609 - 653
  • [2] Convergence of Weak Kähler–Ricci Flows on Minimal Models of Positive Kodaira Dimension
    Phylippe Eyssidieux
    Vincent Guedj
    Ahmed Zeriahi
    Communications in Mathematical Physics, 2018, 357 : 1179 - 1214
  • [3] Ricci flow on Kähler-Einstein surfaces
    X.X. Chen
    G. Tian
    Inventiones mathematicae, 2002, 147 : 487 - 544
  • [4] The Kähler Ricci flow on Fano surfaces (I)
    Xiuxiong Chen
    Bing Wang
    Mathematische Zeitschrift, 2012, 270 : 577 - 587
  • [5] The Kähler–Ricci flow with positive bisectional curvature
    D.H. Phong
    Jian Song
    Jacob Sturm
    Ben Weinkove
    Inventiones mathematicae, 2008, 173 : 651 - 665
  • [6] A NOTE ON CONICAL KHLER-RICCI FLOW ON MINIMAL ELLIPTIC KHLER SURFACES
    张雅山
    Acta Mathematica Scientia, 2018, 38 (01) : 169 - 176
  • [7] Algebraic approximation of Kähler threefolds of Kodaira dimension zero
    Patrick Graf
    Mathematische Annalen, 2018, 371 : 487 - 516
  • [8] Convergence of scalar curvature of Kahler-Ricci flow on manifolds of positive Kodaira dimension
    Jian, Wangjian
    ADVANCES IN MATHEMATICS, 2020, 371
  • [9] Remarks on Kähler Ricci Flow
    Xiuxiong Chen
    Bing Wang
    Journal of Geometric Analysis, 2010, 20 : 335 - 353
  • [10] A modified Kähler–Ricci flow
    Zhou Zhang
    Mathematische Annalen, 2009, 345 : 559 - 579