Smooth approximations of the conical Kähler–Ricci flows

被引:0
|
作者
Yuanqi Wang
机构
[1] University of California at Santa Barbara,Department of Mathematics
来源
Mathematische Annalen | 2016年 / 365卷
关键词
Soliton; Line Bundle; Local Cutting; Einstein Metrics; Model Metrics;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we show that the conical Kähler–Ricci flows introduced in Chen and Wang (Bessel functions, Heat kernel and the conical Kähler–Ricci flow. J. Funct. Anal. 269(2), 2013) exist for all time t∈[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in [0,\infty )$$\end{document} in the weak sense as in Definition 1.2. As a key ingredient of the proof, we show that a conical Kähler–Ricci flow is actually the limit of a sequence of smooth Kähler–Ricci flows.
引用
收藏
页码:835 / 856
页数:21
相关论文
共 50 条
  • [21] A modified Kähler–Ricci flow
    Zhou Zhang
    Mathematische Annalen, 2009, 345 : 559 - 579
  • [22] A note on Kähler–Ricci flow
    Chengjie Yu
    Mathematische Zeitschrift, 2012, 272 : 191 - 201
  • [23] Existence of weak conical Kähler–Einstein metrics along smooth hypersurfaces
    Chengjian Yao
    Mathematische Annalen, 2015, 362 : 1287 - 1304
  • [24] Convergence of Weak Kähler–Ricci Flows on Minimal Models of Positive Kodaira Dimension
    Phylippe Eyssidieux
    Vincent Guedj
    Ahmed Zeriahi
    Communications in Mathematical Physics, 2018, 357 : 1179 - 1214
  • [25] Almost Kähler Ricci Flows and Einstein and Lagrange–Finsler Structures on Lie Algebroids
    Sergiu I. Vacaru
    Mediterranean Journal of Mathematics, 2015, 12 : 1397 - 1427
  • [26] Some progresses on Kähler–Ricci flow
    Gang Tian
    Bollettino dell'Unione Matematica Italiana, 2019, 12 : 251 - 263
  • [27] The Kähler–Ricci flow through singularities
    Jian Song
    Gang Tian
    Inventiones mathematicae, 2017, 207 : 519 - 595
  • [28] On the convergence of a modified Kähler–Ricci flow
    Yuan Yuan
    Mathematische Zeitschrift, 2011, 268 : 281 - 289
  • [29] Ricci-flat Kähler metrics on crepant resolutions of Kähler cones
    Craig van Coevering
    Mathematische Annalen, 2010, 347 : 581 - 611
  • [30] Stability of Kähler-Ricci Flow
    Xiuxiong Chen
    Haozhao Li
    Journal of Geometric Analysis, 2010, 20 : 306 - 334