Modified Kähler–Ricci flow on projective bundles

被引:0
|
作者
Ryosuke Takahashi
机构
[1] Nagoya University,Graduate School of Mathematics
来源
Mathematische Zeitschrift | 2015年 / 281卷
关键词
Kähler–Ricci soliton; Kähler–Ricci flow; Projective bundle; 53C25;
D O I
暂无
中图分类号
学科分类号
摘要
On a compact Kähler manifold, a Kähler metric ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} is called generalized quasi-Einstein (GQE) if it satisfies the equation Ric(ω)-HRic(ω)=LXω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{Ric} (\omega ) - {\mathbb H}\mathrm{Ric} (\omega ) = L_X \omega $$\end{document} for some holomorphic vector field X, where HRic(ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb H}\mathrm{Ric} (\omega )$$\end{document} denotes the harmonic representative of the Ricci form Ric(ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{Ric} (\omega )$$\end{document}. GQE metrics are one of the self-similar solutions of the modified Kähler–Ricci flow: ∂ωt∂t=-Ric(ωt)+HRic(ωt)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{\partial \omega _t}{\partial t} = -\mathrm{Ric}(\omega _t) + {\mathbb H} \mathrm{Ric}(\omega _t)$$\end{document}. In this paper, we propose a method of studying the modified Kähler–Ricci flow on special projective bundles, called admissible bundles, from the view point of symplectic geometry. As a result, we can reduce the modified Kähler–Ricci flow to a simple PDE with one space variable. Moreover, we study the limiting behavior of the solution in some special cases.
引用
收藏
页码:395 / 413
页数:18
相关论文
共 50 条
  • [1] The Kähler–Ricci flow on Fano bundles
    Xin Fu
    Shijin Zhang
    Mathematische Zeitschrift, 2017, 286 : 1605 - 1626
  • [2] A modified Kähler–Ricci flow
    Zhou Zhang
    Mathematische Annalen, 2009, 345 : 559 - 579
  • [3] On the convergence of a modified Kähler–Ricci flow
    Yuan Yuan
    Mathematische Zeitschrift, 2011, 268 : 281 - 289
  • [4] Modified Kahler-Ricci flow on projective bundles
    Takahashi, Ryosuke
    MATHEMATISCHE ZEITSCHRIFT, 2015, 281 (1-2) : 395 - 413
  • [5] The Modified Cusp Kähler–Ricci Flow and Soliton
    Pan Zhang
    The Journal of Geometric Analysis, 2021, 31 : 10402 - 10435
  • [6] On the Kähler-Ricci Flow on Projective Manifolds of General Type
    Gang Tian*
    Zhou Zhang
    Chinese Annals of Mathematics, Series B, 2006, 27 : 179 - 192
  • [7] Remarks on Kähler Ricci Flow
    Xiuxiong Chen
    Bing Wang
    Journal of Geometric Analysis, 2010, 20 : 335 - 353
  • [8] A note on Kähler–Ricci flow
    Chengjie Yu
    Mathematische Zeitschrift, 2012, 272 : 191 - 201
  • [9] Cusp Kähler–Ricci flow on compact Kähler manifolds
    Jiawei Liu
    Xi Zhang
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 289 - 306
  • [10] The Kahler-Ricci Flow on Projective Bundles
    Song, Jian
    Szekelyhidi, Gabor
    Weinkove, Ben
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (02) : 243 - 257