Smooth approximations of the conical Kähler–Ricci flows

被引:0
|
作者
Yuanqi Wang
机构
[1] University of California at Santa Barbara,Department of Mathematics
来源
Mathematische Annalen | 2016年 / 365卷
关键词
Soliton; Line Bundle; Local Cutting; Einstein Metrics; Model Metrics;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we show that the conical Kähler–Ricci flows introduced in Chen and Wang (Bessel functions, Heat kernel and the conical Kähler–Ricci flow. J. Funct. Anal. 269(2), 2013) exist for all time t∈[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\in [0,\infty )$$\end{document} in the weak sense as in Definition 1.2. As a key ingredient of the proof, we show that a conical Kähler–Ricci flow is actually the limit of a sequence of smooth Kähler–Ricci flows.
引用
收藏
页码:835 / 856
页数:21
相关论文
共 50 条