The twisted conical Kähler-Ricci solitons on Fano manifolds

被引:0
|
作者
Jin, Xishen [1 ]
Liu, Jiawei [2 ]
机构
[1] Renmin Univ China, Sch Math, Beijing 100872, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
greatest log Bakry-Emery-Ricci lower bound; twisted conical Kahler-Ricci soliton; twisted Kahler-Ricci soliton; KAHLER-EINSTEIN METRICS; GREATEST LOWER BOUNDS; RICCI CURVATURE; TIME BEHAVIOR; SINGULARITIES; CONTINUITY; UNIQUENESS; INVARIANT; EQUATIONS; ENERGY;
D O I
10.1007/s11425-022-2125-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show the relation between the existence of twisted conical Kahler-Ricci solitons and the greatest log Bakry-Emery-Ricci lower bound on Fano manifolds. This is based on our proofs of some openness theorems on the existence of twisted conical Kahler-Ricci solitons, which generalize Donaldson's existence conjecture and the openness theorem of the conical Kahler-Einstein metrics to the conical soliton case.
引用
收藏
页码:1085 / 1102
页数:18
相关论文
共 50 条
  • [1] The twisted conical K?hler-Ricci solitons on Fano manifolds
    Xishen Jin
    Jiawei Liu
    Science China(Mathematics), 2024, 67 (05) : 1085 - 1102
  • [2] The twisted conical Kähler-Ricci solitons on Fano manifolds
    Xishen Jin
    Jiawei Liu
    Science China Mathematics, 2024, 67 : 1085 - 1102
  • [3] Kähler-Ricci solitons on toric Fano orbifolds
    Yalong Shi
    Xiaohua Zhu
    Mathematische Zeitschrift, 2012, 271 : 1241 - 1251
  • [4] Twisted and conical Kahler-Ricci solitons on Fano manifolds
    Jin, Xishen
    Liu, Jiawei
    Zhang, Xi
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (09) : 2396 - 2421
  • [5] Gap theorems for Kähler-Ricci solitons
    Haozhao Li
    Archiv der Mathematik, 2008, 91 : 187 - 192
  • [6] On weaker notions for Kähler-Ricci solitons
    Pali, Nefton
    MANUSCRIPTA MATHEMATICA, 2024, 175 (3-4) : 753 - 769
  • [7] L°° ESTIMATES FOR K ÄHLER-RICCI FLOW ON KÄHLER-EINSTEIN FANO MANIFOLDS: A NEW DERIVATION
    Jian, Wangjian
    Shi, Yalong
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (03) : 1279 - 1286
  • [8] Stability of Kähler-Ricci flow on a Fano manifold
    Xiaohua Zhu
    Mathematische Annalen, 2013, 356 : 1425 - 1454
  • [9] Generalized almost-Kähler-Ricci solitons ☆
    Albanese, Michael
    Barbaro, Giuseppe
    Lejmi, Mehdi
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2024, 97
  • [10] On the Geometry of Steady Toric Kähler-Ricci Solitons
    Yury Ustinovskiy
    The Journal of Geometric Analysis, 2024, 34