The twisted conical Kähler-Ricci solitons on Fano manifolds

被引:0
|
作者
Jin, Xishen [1 ]
Liu, Jiawei [2 ]
机构
[1] Renmin Univ China, Sch Math, Beijing 100872, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Math & Stat, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
greatest log Bakry-Emery-Ricci lower bound; twisted conical Kahler-Ricci soliton; twisted Kahler-Ricci soliton; KAHLER-EINSTEIN METRICS; GREATEST LOWER BOUNDS; RICCI CURVATURE; TIME BEHAVIOR; SINGULARITIES; CONTINUITY; UNIQUENESS; INVARIANT; EQUATIONS; ENERGY;
D O I
10.1007/s11425-022-2125-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show the relation between the existence of twisted conical Kahler-Ricci solitons and the greatest log Bakry-Emery-Ricci lower bound on Fano manifolds. This is based on our proofs of some openness theorems on the existence of twisted conical Kahler-Ricci solitons, which generalize Donaldson's existence conjecture and the openness theorem of the conical Kahler-Einstein metrics to the conical soliton case.
引用
收藏
页码:1085 / 1102
页数:18
相关论文
共 50 条