Stability of a Timoshenko System with Localized Kelvin–Voigt Dissipation

被引:0
|
作者
Gabriel Aguilera Contreras
Jaime E. Muñoz Rivera
机构
[1] University of Bio-Bio,Department of Mathematics
[2] LNCC,undefined
来源
关键词
Timoshenko beam; Localized viscoelastic dissipative mechanism; Transmission problem; Exponential stability; Polynomial decay; 35B40; 35P05; 35Q74;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Timoshenko beam with localized Kelvin–Voigt dissipation distributed over two components: one of them with constitutive law of the type C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}, and the other with discontinuous law. The third component is simply elastic, where the viscosity is not effective. Our main result is that the decay depends on the position of the components. We will show that the system is exponentially stable if and only if the component with discontinuous constitutive law is not in the center of the beam. When the discontinuous component is in the middle, the solution decays polynomially.
引用
收藏
页码:3547 / 3563
页数:16
相关论文
共 50 条
  • [21] Stability in Kelvin–Voigt poroelasticity
    Brian Straughan
    Bollettino dell'Unione Matematica Italiana, 2021, 14 : 357 - 366
  • [22] Polynomial stability of a transmission problem involving Timoshenko systems with fractional Kelvin-Voigt damping
    Guesmia, Aissa A.
    Mohamad Ali, Zeinab
    Wehbe, Ali
    Youssef, Wael
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (06) : 7140 - 7179
  • [23] Stability of the Timoshenko beam equation with one weakly degenerate local Kelvin-Voigt damping
    Liu, Ruijuan
    Zhang, Qiong
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2025, 105 (03):
  • [24] ABOUT THE STABILITY TO TIMOSHENKO SYSTEM WITH POINTWISE DISSIPATION
    Munoz Rivera, Jaime E.
    Naso, Maria Grazia
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (08): : 2289 - 2303
  • [25] Timoshenko systems with Cattaneo law and partial Kelvin-Voigt damping: well-posedness and stability
    Enyi, Cyril Dennis
    APPLICABLE ANALYSIS, 2023, 102 (18) : 4955 - 4971
  • [26] Stability in Kelvin-Voigt poroelasticity
    Straughan, Brian
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2021, 14 (02): : 357 - 366
  • [27] STABILITY OF THE WAVE EQUATION WITH LOCALIZED KELVIN-VOIGT DAMPING AND BOUNDARY DELAY FEEDBACK
    Nicaise, Serge
    Pignotti, Cristina
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2016, 9 (03): : 791 - 813
  • [28] About the stability to Timoshenko system with one boundary dissipation
    Munoz Rivera, Jaime E.
    Naso, Maria Grazia
    APPLIED MATHEMATICS LETTERS, 2018, 86 : 111 - 118
  • [29] Vibration of nonlocal Kelvin-Voigt viscoelastic damped Timoshenko beams
    Lei, Y.
    Adhikari, S.
    Friswell, M. I.
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2013, 66-67 : 1 - 13
  • [30] Stabilization of transmission system of Kirchhoff plate and wave equations with a localized Kelvin–Voigt damping
    Gimyong Hong
    Hakho Hong
    Journal of Evolution Equations, 2021, 21 : 2239 - 2264