Stability of a Timoshenko System with Localized Kelvin–Voigt Dissipation

被引:0
|
作者
Gabriel Aguilera Contreras
Jaime E. Muñoz Rivera
机构
[1] University of Bio-Bio,Department of Mathematics
[2] LNCC,undefined
来源
关键词
Timoshenko beam; Localized viscoelastic dissipative mechanism; Transmission problem; Exponential stability; Polynomial decay; 35B40; 35P05; 35Q74;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Timoshenko beam with localized Kelvin–Voigt dissipation distributed over two components: one of them with constitutive law of the type C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}, and the other with discontinuous law. The third component is simply elastic, where the viscosity is not effective. Our main result is that the decay depends on the position of the components. We will show that the system is exponentially stable if and only if the component with discontinuous constitutive law is not in the center of the beam. When the discontinuous component is in the middle, the solution decays polynomially.
引用
收藏
页码:3547 / 3563
页数:16
相关论文
共 50 条
  • [42] Bending vibration of axially loaded Timoshenko beams with locally distributed Kelvin-Voigt damping
    Chen, Wei-Ren
    JOURNAL OF SOUND AND VIBRATION, 2011, 330 (13) : 3040 - 3056
  • [43] Stability Results for a Laminated Beam with Kelvin-Voigt Damping
    Ramos, A. J. A.
    Freitas, M. M.
    Cabanillas, V. R.
    Dos Santos, M. J.
    Raposo, C. A.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (05)
  • [44] Exponential stability of an elastic string with local Kelvin–Voigt damping
    Qiong Zhang
    Zeitschrift für angewandte Mathematik und Physik, 2010, 61 : 1009 - 1015
  • [45] Stability of the wave equations on a tree with local Kelvin–Voigt damping
    Kaïs Ammari
    Zhuangyi Liu
    Farhat Shel
    Semigroup Forum, 2020, 100 : 364 - 382
  • [46] Stability for coupled waves with locally disturbed Kelvin–Voigt damping
    Fathi Hassine
    Nadia Souayeh
    Semigroup Forum, 2021, 102 : 134 - 159
  • [47] Exponential stability for the wave equations with local Kelvin–Voigt damping
    Kangsheng Liu
    Bopeng Rao
    Zeitschrift für angewandte Mathematik und Physik ZAMP, 2006, 57 : 419 - 432
  • [48] On the stability of Bresse system with one discontinuous local internal Kelvin–Voigt damping on the axial force
    Mohammad Akil
    Haidar Badawi
    Serge Nicaise
    Ali Wehbe
    Zeitschrift für angewandte Mathematik und Physik, 2021, 72
  • [50] HYDRODYNAMIC KELVIN-VOIGT MODEL TRANSPORTATION SYSTEM
    Pihnastyi, Oleh M.
    Khodusov, Valery D.
    EAST EUROPEAN JOURNAL OF PHYSICS, 2020, (04): : 95 - 109