Stability Results for a Laminated Beam with Kelvin-Voigt Damping

被引:2
|
作者
Ramos, A. J. A. [1 ]
Freitas, M. M. [1 ]
Cabanillas, V. R. [2 ]
Dos Santos, M. J. [3 ]
Raposo, C. A. [4 ]
机构
[1] Fed Univ Para, Fac Math, Rua Raimundo Santana S-N, BR-68721000 Salinopolis, Para, Brazil
[2] Univ Lima, Programa Estudios Gen, Ave Javier Prado Este 4600, Lima 15023, Peru
[3] Fed Univ Para, Fac Exact Sci & Technol, Rua Manoel de Abreu S-N, BR-68440000 Abaetetuba, Para, Brazil
[4] Univ Fed Bahia, Math Dept, Av Milton Santos S-N, BR-40170110 Salvador, BA, Brazil
关键词
35Q60; 35Q93; 74F15; 35Q74; 93B52; EXPONENTIAL STABILITY; WELL-POSEDNESS; DECAY; STABILIZATION;
D O I
10.1007/s40840-023-01550-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we consider a laminated beam subjected to Kelvin-Voigt damping. Under the semigroup theory approach, applying the Lumer-Phillips Theorem, we establish the well-posedness of the associated initial value problem. This paper aims to prove exponential and polynomial stability results when the system is fully and partially damped. First, using the method developed by Z. Liu and S. Zheng, we show that the semigroup associated with the fully damped system is analytic and, consequently, exponentially stable. On the other hand, we prove the lack of exponential stability when the system is partially damped, and then, using the Borichev and Tomilov Theorem, we prove its polynomial stability.
引用
收藏
页数:27
相关论文
共 50 条
  • [1] Stability Results for a Laminated Beam with Kelvin–Voigt Damping
    A. J. A. Ramos
    M. M. Freitas
    V. R. Cabanillas
    M. J. Dos Santos
    C. A. Raposo
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [2] Optimal stability results for laminated beams with Kelvin-Voigt damping and delay
    Cabanillas Zannini, Victor
    Potenciano-Machado, Leyter
    Quispe Mendez, Teofanes
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 514 (02)
  • [3] Optimal polynomial stability for laminated beams with Kelvin-Voigt damping
    Cabanillas Zannini, Victor R.
    Quispe Mendez, Teofanes
    Sanchez Vargas, Juan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (16) : 9578 - 9601
  • [4] Stability for the Timoshenko Beam System with Local Kelvin-Voigt Damping
    Hong Liang ZHAO
    Chun Guo ZHANG
    Acta Mathematica Sinica(English Series), 2005, 21 (03) : 655 - 666
  • [5] Stability for the Timoshenko beam system with local Kelvin-Voigt damping
    Zhao, HL
    Liu, KS
    Zhang, CG
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2005, 21 (03) : 655 - 666
  • [6] Asymptotic behavior of laminated beams with Kelvin-Voigt damping
    Victor R. Cabanillas
    Teófanes Quispe Méndez
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2025, 71 (1)
  • [7] On the Stabilization of the Bresse Beam with Kelvin-Voigt Damping
    El Arwadi, Toufic
    Youssef, Wael
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (03): : 1831 - 1857
  • [8] Stability analysis of laminated beams with Kelvin-Voigt damping and strong time delay
    Nonato, C. A.
    Raposo, C. A.
    Feng, B.
    Ramos, A. J. A.
    ASYMPTOTIC ANALYSIS, 2023, 132 (3-4) : 549 - 574
  • [9] Optimal stability for laminated beams with Kelvin-Voigt damping and Fourier's law
    Zannini, Victor Cabanillas
    Mendez, Teofanes Quispe
    Ramos, A. J. A.
    ASYMPTOTIC ANALYSIS, 2024, 137 (1-2) : 123 - 151
  • [10] The effect of Kelvin-Voigt damping on the stability of Timoshenko laminated beams system with history
    Cabanillas, Victor R.
    Mendez, Teofanes Quispe
    Barrientos, Carlos Quicano
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (08) : 2973 - 2996