Stability Results for a Laminated Beam with Kelvin-Voigt Damping
被引:2
|
作者:
Ramos, A. J. A.
论文数: 0引用数: 0
h-index: 0
机构:
Fed Univ Para, Fac Math, Rua Raimundo Santana S-N, BR-68721000 Salinopolis, Para, BrazilFed Univ Para, Fac Math, Rua Raimundo Santana S-N, BR-68721000 Salinopolis, Para, Brazil
Ramos, A. J. A.
[1
]
Freitas, M. M.
论文数: 0引用数: 0
h-index: 0
机构:
Fed Univ Para, Fac Math, Rua Raimundo Santana S-N, BR-68721000 Salinopolis, Para, BrazilFed Univ Para, Fac Math, Rua Raimundo Santana S-N, BR-68721000 Salinopolis, Para, Brazil
Freitas, M. M.
[1
]
Cabanillas, V. R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lima, Programa Estudios Gen, Ave Javier Prado Este 4600, Lima 15023, PeruFed Univ Para, Fac Math, Rua Raimundo Santana S-N, BR-68721000 Salinopolis, Para, Brazil
Cabanillas, V. R.
[2
]
Dos Santos, M. J.
论文数: 0引用数: 0
h-index: 0
机构:
Fed Univ Para, Fac Exact Sci & Technol, Rua Manoel de Abreu S-N, BR-68440000 Abaetetuba, Para, BrazilFed Univ Para, Fac Math, Rua Raimundo Santana S-N, BR-68721000 Salinopolis, Para, Brazil
Dos Santos, M. J.
[3
]
Raposo, C. A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Bahia, Math Dept, Av Milton Santos S-N, BR-40170110 Salvador, BA, BrazilFed Univ Para, Fac Math, Rua Raimundo Santana S-N, BR-68721000 Salinopolis, Para, Brazil
Raposo, C. A.
[4
]
机构:
[1] Fed Univ Para, Fac Math, Rua Raimundo Santana S-N, BR-68721000 Salinopolis, Para, Brazil
[2] Univ Lima, Programa Estudios Gen, Ave Javier Prado Este 4600, Lima 15023, Peru
[3] Fed Univ Para, Fac Exact Sci & Technol, Rua Manoel de Abreu S-N, BR-68440000 Abaetetuba, Para, Brazil
[4] Univ Fed Bahia, Math Dept, Av Milton Santos S-N, BR-40170110 Salvador, BA, Brazil
In this work, we consider a laminated beam subjected to Kelvin-Voigt damping. Under the semigroup theory approach, applying the Lumer-Phillips Theorem, we establish the well-posedness of the associated initial value problem. This paper aims to prove exponential and polynomial stability results when the system is fully and partially damped. First, using the method developed by Z. Liu and S. Zheng, we show that the semigroup associated with the fully damped system is analytic and, consequently, exponentially stable. On the other hand, we prove the lack of exponential stability when the system is partially damped, and then, using the Borichev and Tomilov Theorem, we prove its polynomial stability.
机构:
Univ Paris Saclay, CNRS, UMR 8100, Lab Math Appl, Site UVSQ,45 Ave Etats Unis, F-78035 Versailles, FranceUniv Paris Saclay, CNRS, UMR 8100, Lab Math Appl, Site UVSQ,45 Ave Etats Unis, F-78035 Versailles, France
Robbiano, Luc
Zhang, Qiong
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Inst Technol, Sch Math & Stat, Beijing Key Lab MCAACI, Beijing 100081, Peoples R ChinaUniv Paris Saclay, CNRS, UMR 8100, Lab Math Appl, Site UVSQ,45 Ave Etats Unis, F-78035 Versailles, France