Stability Results for a Laminated Beam with Kelvin-Voigt Damping

被引:2
|
作者
Ramos, A. J. A. [1 ]
Freitas, M. M. [1 ]
Cabanillas, V. R. [2 ]
Dos Santos, M. J. [3 ]
Raposo, C. A. [4 ]
机构
[1] Fed Univ Para, Fac Math, Rua Raimundo Santana S-N, BR-68721000 Salinopolis, Para, Brazil
[2] Univ Lima, Programa Estudios Gen, Ave Javier Prado Este 4600, Lima 15023, Peru
[3] Fed Univ Para, Fac Exact Sci & Technol, Rua Manoel de Abreu S-N, BR-68440000 Abaetetuba, Para, Brazil
[4] Univ Fed Bahia, Math Dept, Av Milton Santos S-N, BR-40170110 Salvador, BA, Brazil
关键词
35Q60; 35Q93; 74F15; 35Q74; 93B52; EXPONENTIAL STABILITY; WELL-POSEDNESS; DECAY; STABILIZATION;
D O I
10.1007/s40840-023-01550-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we consider a laminated beam subjected to Kelvin-Voigt damping. Under the semigroup theory approach, applying the Lumer-Phillips Theorem, we establish the well-posedness of the associated initial value problem. This paper aims to prove exponential and polynomial stability results when the system is fully and partially damped. First, using the method developed by Z. Liu and S. Zheng, we show that the semigroup associated with the fully damped system is analytic and, consequently, exponentially stable. On the other hand, we prove the lack of exponential stability when the system is partially damped, and then, using the Borichev and Tomilov Theorem, we prove its polynomial stability.
引用
收藏
页数:27
相关论文
共 50 条
  • [41] EVENTUAL DIFFERENTIABILITY OF A STRING WITH LOCAL KELVIN-VOIGT DAMPING
    Liu, Kangsheng
    Liu, Zhuangyi
    Zhang, Qiong
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2017, 23 (02) : 443 - 454
  • [42] Stabilization for the Wave Equation with Singular Kelvin-Voigt Damping
    Ammari, Kais
    Hassine, Fathi
    Robbiano, Luc
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 236 (02) : 577 - 601
  • [43] Spectral analysis of a wave equation with Kelvin-Voigt damping
    Guo, Bao-Zhu
    Wang, Jun-Min
    Zhang, Guo-Dong
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2010, 90 (04): : 323 - 342
  • [44] On the porous-elastic system with Kelvin-Voigt damping
    Santos, M. L.
    Almeida Junior, D. S.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 445 (01) : 498 - 512
  • [45] Generalized Kelvin-Voigt Damping for Geometrically Nonlinear Beams
    Artola, Marc
    Wynn, Andrew
    Palacios, Rafael
    AIAA JOURNAL, 2021, 59 (01) : 356 - 365
  • [46] Frequency Analysis of a Wave Equation with Kelvin-Voigt Damping
    Guo, Bao-Zhu
    Wang, Jun-Min
    Zhang, Guo-Dong
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 4471 - 4476
  • [47] Optimal decay for coupled waves with Kelvin-Voigt damping
    Oquendo, Higidio Portillo
    Pacheco, Patricia Sanez
    APPLIED MATHEMATICS LETTERS, 2017, 67 : 16 - 20
  • [48] Stability for the Timoshenko Beam System with Local Kelvin–Voigt Damping
    Hong Liang Zhao
    Kang Sheng Liu
    Chun Guo Zhang
    Acta Mathematica Sinica, 2005, 21 : 655 - 666
  • [49] Asymptotic behavior of the Rao-Nakra sandwich beam model with Kelvin-Voigt damping
    Quispe Mendez, Teofanes
    Cabanillas Zannini, Victor
    Feng, Baowei
    MATHEMATICS AND MECHANICS OF SOLIDS, 2024, 29 (01) : 22 - 38
  • [50] A Numerical Method of the Euler-Bernoulli Beam with Optimal Local Kelvin-Voigt Damping
    Yu, Xin
    Ren, Zhigang
    Zhang, Qian
    Xu, Chao
    JOURNAL OF APPLIED MATHEMATICS, 2014,