On the porous-elastic system with Kelvin-Voigt damping

被引:18
|
作者
Santos, M. L. [1 ]
Almeida Junior, D. S. [1 ]
机构
[1] Fed Univ Para, Fac Math, Augusto Correa St 01, BR-66075110 Belem, Para, Brazil
关键词
Porous elastic system; Kelvin-Voigt damping; Analyticity; Exponential decay; EXPONENTIAL DECAY; MEMORY TYPE; ENERGY; SEMIGROUPS; VOIDS; BEAM;
D O I
10.1016/j.jmaa.2016.08.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article we are considering the one-dimensional equations of a homogeneous and isotropic porous elastic solid with Kelvin-Voigt damping. We prove that the semigroup associated with the system (1.3) with Dirichlet-Dirichlet boundary conditions or Dirichlet-Neumann boundary conditions is analytic and consequently exponentially stable. On the other hand, we prove that the system (1.3) with Dirichlet-Neumann boundary conditions has lack of exponential decay and it decays as 1/root t for the case gamma(1) > 0, gamma(2) = 0 or gamma(1) = 0, gamma(2) > 0. Moreover, we prove that this rate is optimal. We apply the main results for the Timoshenko model. (C) 2016 Published by Elsevier Inc.
引用
收藏
页码:498 / 512
页数:15
相关论文
共 50 条
  • [1] Asymptotic analysis of a porous elastic system with Kelvin-Voigt damping from the second spectrum perspective
    Zougheib, Hamza
    El Arwadi, Toufic
    Madureira, Rodrigo L. R.
    Rincon, Mauro A.
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (04):
  • [2] On localized Kelvin-Voigt damping
    Renardy, M
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2004, 84 (04): : 280 - 283
  • [3] Porous elastic system with Kelvin-Voigt: analyticity and optimal decay rate
    Oliveira, M. L. S.
    Maciel, E. S.
    Dos Santos, M. J.
    [J]. APPLICABLE ANALYSIS, 2022, 101 (08) : 2860 - 2877
  • [4] Stability of elastic transmission systems with a local Kelvin-Voigt damping
    Hassine, Fathi
    [J]. EUROPEAN JOURNAL OF CONTROL, 2015, 23 : 84 - 93
  • [5] Exponential stability of an elastic string with local Kelvin-Voigt damping
    Zhang, Qiong
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2010, 61 (06): : 1009 - 1015
  • [6] Stability of a Timoshenko system with local Kelvin-Voigt damping
    Tian, Xinhong
    Zhang, Qiong
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (01):
  • [7] Suspension bridge with Kelvin-Voigt damping
    Correia, Leandro
    Raposo, Carlos
    Ribeiro, Joilson
    Gutemberg, Luiz
    [J]. CONTRIBUTIONS TO MATHEMATICS, 2024, 10 : 11 - 19
  • [8] Effects of Kelvin-Voigt Damping on the Stability of (Thermo)Elastic Timoshenko System with Second Sound
    Cui, Jianan
    Chai, Shugen
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2024, 89 (01):
  • [9] Spectrum and stability for elastic systems with global or local Kelvin-Voigt damping
    Chen, SP
    Liu, KS
    Liu, ZY
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 59 (02) : 651 - 668
  • [10] On porous-elastic system with localized damping
    M. L. Santos
    D. S. Almeida Júnior
    [J]. Zeitschrift für angewandte Mathematik und Physik, 2016, 67