Stability of the Timoshenko beam equation with one weakly degenerate local Kelvin-Voigt damping

被引:0
|
作者
Liu, Ruijuan [1 ]
Zhang, Qiong [1 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing Key Lab MCAACI, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
ELASTIC-SYSTEMS; DECAY-RATE; SHEAR;
D O I
10.1002/zamm.202300262
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Timoshenko beam equation with locally distributed Kelvin-Voigt damping, which affects either the shear stress or the bending moment. The damping coefficient exhibits a singularity, causing its derivative to be discontinuous. By using the frequency domain method and multiplier technique, we prove that the associated semigroup is polynomial stability. Specifically, regardless of whether the local Kelvin-Voigt damping acts on the shear stress or the bending moment, the system decays polynomially with rate t-(1)/(2).
引用
收藏
页数:14
相关论文
共 50 条
  • [1] STABILITY AND REGULARITY OF SOLUTION TO THE TIMOSHENKO BEAM EQUATION WITH LOCAL KELVIN-VOIGT DAMPING
    Liu, Zhuangyi
    Zhang, Qiong
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (06) : 3919 - 3947
  • [2] Stability for the Timoshenko Beam System with Local Kelvin-Voigt Damping
    Hong Liang ZHAO
    Chun Guo ZHANG
    Acta Mathematica Sinica(English Series), 2005, 21 (03) : 655 - 666
  • [3] Stability for the Timoshenko beam system with local Kelvin-Voigt damping
    Zhao, HL
    Liu, KS
    Zhang, CG
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2005, 21 (03) : 655 - 666
  • [4] Stability of a Timoshenko system with local Kelvin-Voigt damping
    Tian, Xinhong
    Zhang, Qiong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (01):
  • [5] Sharp stability of a string with local degenerate Kelvin-Voigt damping
    Han, Zhong-Jie
    Liu, Zhuangyi
    Zhang, Qiong
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2022, 102 (10):
  • [6] Polynomial stability of one-dimensional wave equation with local degenerate Kelvin-Voigt damping and discontinuous coefficients
    Zhang, Hua-Lei
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2024, 104 (03):
  • [7] Stability for the Timoshenko Beam System with Local Kelvin–Voigt Damping
    Hong Liang Zhao
    Kang Sheng Liu
    Chun Guo Zhang
    Acta Mathematica Sinica, 2005, 21 : 655 - 666
  • [8] Stability for Euler-Bernoulli Beam Equation with a Local Degenerated Kelvin-Voigt Damping
    Hassine, Fathi
    ACTA APPLICANDAE MATHEMATICAE, 2023, 184 (01)
  • [9] Stability for Euler-Bernoulli Beam Equation with a Local Degenerated Kelvin-Voigt Damping
    Fathi Hassine
    Acta Applicandae Mathematicae, 2023, 184
  • [10] Thermal Timoshenko beam system with suspenders and Kelvin-Voigt damping
    Mukiawa, Soh Edwin
    Khan, Yasir
    Al Sulaimani, Hamdan
    Omaba, McSylvester Ejighikeme
    Enyi, Cyril Dennis
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2023, 9