Stability for Euler-Bernoulli Beam Equation with a Local Degenerated Kelvin-Voigt Damping

被引:2
|
作者
Hassine, Fathi [1 ]
机构
[1] Univ Monastir, Fac Sci Monastir, Dept Math, UR Anal & Control PDEs,UR 13ES64, Monastir, Tunisia
关键词
Polynomial stability; Degenerate Kelvin-Voigt damping; ELASTIC-SYSTEMS; WAVE-EQUATIONS; DECAY; ENERGY; STABILIZATION; ANALYTICITY; PLATE;
D O I
10.1007/s10440-023-00559-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Euler-Bernoulli beam equation with a local Kelvin-Voigt dissipation type in the interval (-1, 1). The coefficient damping is only effective in (0, 1) and is degenerating near the 0 point with a speed at least equal to x alpha where alpha is an element of (0, 5). We prove that the semigroup corresponding to the system is polynomially stable and the decay rate depends on the degeneracy speed alpha. Here we develop a new method which consists to use a local analysis approach combined with the classical iterative method.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Stability for Euler-Bernoulli Beam Equation with a Local Degenerated Kelvin-Voigt Damping
    Fathi Hassine
    Acta Applicandae Mathematicae, 2023, 184
  • [2] On the spectrum of Euler-Bernoulli beam equation with Kelvin-Voigt damping
    Zhang, Guo-Dong
    Guo, Bao-Zhu
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 374 (01) : 210 - 229
  • [3] A Transmission Problem for Euler-Bernoulli beam with Kelvin-Voigt Damping
    Raposo, C. A.
    Bastos, W. D.
    Avila, J. A. J.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2011, 5 (01): : 17 - 28
  • [4] A Numerical Method of the Euler-Bernoulli Beam with Optimal Local Kelvin-Voigt Damping
    Yu, Xin
    Ren, Zhigang
    Zhang, Qian
    Xu, Chao
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [5] Identifiability of stiffness and damping coefficients in Euler-Bernoulli beam equations with Kelvin-Voigt damping
    Ito, K
    Nakagiri, S
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1997, 18 (1-2) : 107 - 129
  • [6] Exponential decay of energy of the Euler-Bernoulli beam with locally distributed Kelvin-Voigt damping
    Liu, KS
    Liu, ZG
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (03) : 1086 - 1098
  • [7] ASYMPTOTIC BEHAVIOR OF THE TRANSMISSION EULER-BERNOULLI PLATE AND WAVE EQUATION WITH A LOCALIZED KELVIN-VOIGT DAMPING
    Hassine, Fathi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2016, 21 (06): : 1757 - 1774
  • [8] Disturbance attenuation in the Euler-Bernoulli beam with viscous and Kelvin-Voigt damping via piezoelectric actuators
    Selivanov, Anton
    Fridman, Emilia
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 1961 - 1966
  • [9] Dynamic boundary stabilization of Euler-Bernoulli beam through a Kelvin-Voigt damped wave equation
    Lu, Lu
    Wang, Jun-Min
    26TH CHINESE CONTROL AND DECISION CONFERENCE (2014 CCDC), 2014, : 223 - 228
  • [10] Inverse problems of identifying the unknown transverse shear force in the Euler-Bernoulli beam with Kelvin-Voigt damping
    Kumarasamy, Sakthivel
    Hasanov, Alemdar
    Dileep, Anjuna
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2024, 32 (01): : 75 - 106