Stability for Euler-Bernoulli Beam Equation with a Local Degenerated Kelvin-Voigt Damping

被引:2
|
作者
Hassine, Fathi [1 ]
机构
[1] Univ Monastir, Fac Sci Monastir, Dept Math, UR Anal & Control PDEs,UR 13ES64, Monastir, Tunisia
关键词
Polynomial stability; Degenerate Kelvin-Voigt damping; ELASTIC-SYSTEMS; WAVE-EQUATIONS; DECAY; ENERGY; STABILIZATION; ANALYTICITY; PLATE;
D O I
10.1007/s10440-023-00559-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Euler-Bernoulli beam equation with a local Kelvin-Voigt dissipation type in the interval (-1, 1). The coefficient damping is only effective in (0, 1) and is degenerating near the 0 point with a speed at least equal to x alpha where alpha is an element of (0, 5). We prove that the semigroup corresponding to the system is polynomially stable and the decay rate depends on the degeneracy speed alpha. Here we develop a new method which consists to use a local analysis approach combined with the classical iterative method.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Stability of elastic transmission systems with a local Kelvin-Voigt damping
    Hassine, Fathi
    EUROPEAN JOURNAL OF CONTROL, 2015, 23 : 84 - 93
  • [22] Exponential stability for the wave equations with local Kelvin-Voigt damping
    Liu, Kangsheng
    Rao, Bopeng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2006, 57 (03): : 419 - 432
  • [23] Exponential stability of an elastic string with local Kelvin-Voigt damping
    Zhang, Qiong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2010, 61 (06): : 1009 - 1015
  • [24] Kelvin-Voigt lumped parameter models for approximation of the Power-law Euler-Bernoulli beams
    Wei, Dongming
    Aniyarov, Almir
    Zhang, Dichuan
    Spitas, Christos
    Nurakhmetov, Daulet
    Amrin, Andas
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 78 : 246 - 255
  • [25] On the Stabilization of the Bresse Beam with Kelvin-Voigt Damping
    El Arwadi, Toufic
    Youssef, Wael
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 83 (03): : 1831 - 1857
  • [26] Longtime behavior of multidimensional wave equation with local Kelvin-Voigt damping
    Han, Zhong-Jie
    Yu, Kai
    Zhang, Qiong
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2022, 102 (06):
  • [27] Stability of an abstract-wave equation with delay and a Kelvin-Voigt damping
    Ammari, Kais
    Nicaise, Serge
    Pignotti, Cristina
    ASYMPTOTIC ANALYSIS, 2015, 95 (1-2) : 21 - 38
  • [28] Spectrum and stability for elastic systems with global or local Kelvin-Voigt damping
    Chen, SP
    Liu, KS
    Liu, ZY
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 59 (02) : 651 - 668
  • [29] STABILITY OF A STRING WITH LOCAL KELVIN-VOIGT DAMPING AND NONSMOOTH COEFFICIENT AT INTERFACE
    Liu, Zhuangyi
    Zhang, Qiong
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2016, 54 (04) : 1859 - 1871
  • [30] Exponential stability for the wave equations with local Kelvin-Voigt damping.
    Liu, KS
    Rao, BP
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (11) : 769 - 774