Stability for Euler-Bernoulli Beam Equation with a Local Degenerated Kelvin-Voigt Damping

被引:2
|
作者
Hassine, Fathi [1 ]
机构
[1] Univ Monastir, Fac Sci Monastir, Dept Math, UR Anal & Control PDEs,UR 13ES64, Monastir, Tunisia
关键词
Polynomial stability; Degenerate Kelvin-Voigt damping; ELASTIC-SYSTEMS; WAVE-EQUATIONS; DECAY; ENERGY; STABILIZATION; ANALYTICITY; PLATE;
D O I
10.1007/s10440-023-00559-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Euler-Bernoulli beam equation with a local Kelvin-Voigt dissipation type in the interval (-1, 1). The coefficient damping is only effective in (0, 1) and is degenerating near the 0 point with a speed at least equal to x alpha where alpha is an element of (0, 5). We prove that the semigroup corresponding to the system is polynomially stable and the decay rate depends on the degeneracy speed alpha. Here we develop a new method which consists to use a local analysis approach combined with the classical iterative method.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Gevrey regularity for the Euler-Bernoulli beam equation with localized structural damping
    Caggio, Matteo
    Dell'Oro, Filippo
    APPLICABLE ANALYSIS, 2024, 103 (09) : 1587 - 1603
  • [42] Stability for the Timoshenko Beam System with Local Kelvin–Voigt Damping
    Hong Liang Zhao
    Kang Sheng Liu
    Chun Guo Zhang
    Acta Mathematica Sinica, 2005, 21 : 655 - 666
  • [43] Polynomial stability of one-dimensional wave equation with local degenerate Kelvin-Voigt damping and discontinuous coefficients
    Zhang, Hua-Lei
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2024, 104 (03):
  • [44] An inverse problem for the transmission wave equation with Kelvin-Voigt damping
    Zhao, Zhongliu
    Zhang, Wensheng
    APPLICABLE ANALYSIS, 2023, 102 (13) : 3710 - 3732
  • [45] EFFECT OF KELVIN-VOIGT DAMPING ON SPECTRUM ANALYSIS OF A WAVE EQUATION
    Lu, Liqing
    Zhao, Liyan
    Hu, Jing
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [46] Thermal Timoshenko beam system with suspenders and Kelvin-Voigt damping
    Mukiawa, Soh Edwin
    Khan, Yasir
    Al Sulaimani, Hamdan
    Omaba, McSylvester Ejighikeme
    Enyi, Cyril Dennis
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2023, 9
  • [47] Stability of a Nonlinear Axially Moving String With the Kelvin-Voigt Damping
    Shahruz, S. M.
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2009, 131 (01): : 0145011 - 0145014
  • [48] Optimal polynomial stability for laminated beams with Kelvin-Voigt damping
    Cabanillas Zannini, Victor R.
    Quispe Mendez, Teofanes
    Sanchez Vargas, Juan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (16) : 9578 - 9601
  • [49] Suspension bridge with Kelvin-Voigt damping
    Correia, Leandro
    Raposo, Carlos
    Ribeiro, Joilson
    Gutemberg, Luiz
    CONTRIBUTIONS TO MATHEMATICS, 2024, 10 : 11 - 19
  • [50] Stability for coupled waves with locally disturbed Kelvin-Voigt damping
    Hassine, Fathi
    Souayeh, Nadia
    SEMIGROUP FORUM, 2021, 102 (01) : 134 - 159