Stability of the Timoshenko beam equation with one weakly degenerate local Kelvin-Voigt damping

被引:0
|
作者
Liu, Ruijuan [1 ]
Zhang, Qiong [1 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing Key Lab MCAACI, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
ELASTIC-SYSTEMS; DECAY-RATE; SHEAR;
D O I
10.1002/zamm.202300262
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Timoshenko beam equation with locally distributed Kelvin-Voigt damping, which affects either the shear stress or the bending moment. The damping coefficient exhibits a singularity, causing its derivative to be discontinuous. By using the frequency domain method and multiplier technique, we prove that the associated semigroup is polynomial stability. Specifically, regardless of whether the local Kelvin-Voigt damping acts on the shear stress or the bending moment, the system decays polynomially with rate t-(1)/(2).
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Exponential stability for the wave equations with local Kelvin-Voigt damping.
    Liu, KS
    Rao, BP
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (11) : 769 - 774
  • [32] On the stability of Bresse system with one discontinuous local internal Kelvin-Voigt damping on the axial force
    Akil, Mohammad
    Badawi, Haidar
    Nicaise, Serge
    Wehbe, Ali
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (03):
  • [33] Logarithmic Decay of Wave Equation with Kelvin-Voigt Damping
    Robbiano, Luc
    Zhang, Qiong
    MATHEMATICS, 2020, 8 (05)
  • [34] Stabilization for the Wave Equation with Singular Kelvin-Voigt Damping
    Ammari, Kais
    Hassine, Fathi
    Robbiano, Luc
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2020, 236 (02) : 577 - 601
  • [35] Spectral analysis of a wave equation with Kelvin-Voigt damping
    Guo, Bao-Zhu
    Wang, Jun-Min
    Zhang, Guo-Dong
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2010, 90 (04): : 323 - 342
  • [36] Vibration analysis of twisted Timoshenko beams with internal Kelvin-Voigt damping
    Chen, W. R.
    Hsin, S. W.
    Chu, T. H.
    7TH ASIAN-PACIFIC CONFERENCE ON AEROSPACE TECHNOLOGY AND SCIENCE, APCATS 2013, 2013, 67 : 525 - 532
  • [37] Frequency Analysis of a Wave Equation with Kelvin-Voigt Damping
    Guo, Bao-Zhu
    Wang, Jun-Min
    Zhang, Guo-Dong
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 4471 - 4476
  • [38] STABILITY OF AN N-COMPONENT TIMOSHENKO BEAM WITH LOCALIZED KELVIN-VOIGT AND FRICTIONAL DISSIPATION
    Maryati, Tita K.
    Munoz Rivera, Jaime E.
    Rambaud, Amelie
    Vera, Octavio
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [39] Local uniform stability for the semilinear wave equation in inhomogeneous media with locally distributed Kelvin-Voigt damping
    Astudillo, M.
    Cavalcanti, M. M.
    Fukuoka, R.
    Gonzalez Martinez, V. H.
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (14-15) : 2145 - 2159
  • [40] On localized Kelvin-Voigt damping
    Renardy, M
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2004, 84 (04): : 280 - 283