Stability of the Timoshenko beam equation with one weakly degenerate local Kelvin-Voigt damping

被引:0
|
作者
Liu, Ruijuan [1 ]
Zhang, Qiong [1 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing Key Lab MCAACI, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
ELASTIC-SYSTEMS; DECAY-RATE; SHEAR;
D O I
10.1002/zamm.202300262
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Timoshenko beam equation with locally distributed Kelvin-Voigt damping, which affects either the shear stress or the bending moment. The damping coefficient exhibits a singularity, causing its derivative to be discontinuous. By using the frequency domain method and multiplier technique, we prove that the associated semigroup is polynomial stability. Specifically, regardless of whether the local Kelvin-Voigt damping acts on the shear stress or the bending moment, the system decays polynomially with rate t-(1)/(2).
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Longtime behavior of multidimensional wave equation with local Kelvin-Voigt damping
    Han, Zhong-Jie
    Yu, Kai
    Zhang, Qiong
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2022, 102 (06):
  • [22] Stability of an abstract-wave equation with delay and a Kelvin-Voigt damping
    Ammari, Kais
    Nicaise, Serge
    Pignotti, Cristina
    ASYMPTOTIC ANALYSIS, 2015, 95 (1-2) : 21 - 38
  • [23] Stability of a Timoshenko System with Localized Kelvin-Voigt Dissipation
    Aguilera Contreras, Gabriel
    Munoz Rivera, Jaime E.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (03): : 3547 - 3563
  • [24] Polynomial stability for a Timoshenko-type system of thermoelasticity with partial Kelvin-Voigt damping
    Cui, Jianan
    Chai, Shugen
    Cao, Xiaomin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 520 (02)
  • [25] Polynomial stability of a transmission problem involving Timoshenko systems with fractional Kelvin-Voigt damping
    Guesmia, Aissa A.
    Mohamad Ali, Zeinab
    Wehbe, Ali
    Youssef, Wael
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (06) : 7140 - 7179
  • [26] Non-exponential stability to a Timoshenko system with heat conduction and Kelvin-Voigt damping
    Cui, Jianan
    Chai, Shugen
    APPLIED MATHEMATICS LETTERS, 2023, 140
  • [27] Effects of Kelvin-Voigt Damping on the Stability of (Thermo)Elastic Timoshenko System with Second Sound
    Cui, Jianan
    Chai, Shugen
    APPLIED MATHEMATICS AND OPTIMIZATION, 2024, 89 (01):
  • [28] Spectrum and stability for elastic systems with global or local Kelvin-Voigt damping
    Chen, SP
    Liu, KS
    Liu, ZY
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1998, 59 (02) : 651 - 668
  • [29] A transmission problem for the Timoshenko system with one local Kelvin-Voigt damping and non-smooth coefficient at the interface
    Wehbe, Ali
    Ghader, Mouhammad
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (08):
  • [30] STABILITY OF A STRING WITH LOCAL KELVIN-VOIGT DAMPING AND NONSMOOTH COEFFICIENT AT INTERFACE
    Liu, Zhuangyi
    Zhang, Qiong
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2016, 54 (04) : 1859 - 1871