Stability in Kelvin–Voigt poroelasticity

被引:0
|
作者
Brian Straughan
机构
[1] University of Durham,Department of Mathematics
关键词
Continuous dependence; Kelvin–Voigt; Improperly posed; Poroelasticity; 74H25; 74H55; 35B30; 35B35; 35M13;
D O I
暂无
中图分类号
学科分类号
摘要
Hölder continuous dependence of solutions upon the initial data is established for the linear theory of Kelvin–Voigt poroelasticity requiring only symmetry conditions upon the elastic coefficients. A novel functional is introduced to which a logarithmic convexity technique is employed.
引用
收藏
页码:357 / 366
页数:9
相关论文
共 50 条
  • [1] Stability in Kelvin-Voigt poroelasticity
    Straughan, Brian
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2021, 14 (02): : 357 - 366
  • [2] Stability of a Timoshenko system with local Kelvin–Voigt damping
    Xinhong Tian
    Qiong Zhang
    Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [3] Stability of a Timoshenko System with Localized Kelvin–Voigt Dissipation
    Gabriel Aguilera Contreras
    Jaime E. Muñoz Rivera
    Applied Mathematics & Optimization, 2021, 84 : 3547 - 3563
  • [4] Stability Results for a Laminated Beam with Kelvin–Voigt Damping
    A. J. A. Ramos
    M. M. Freitas
    V. R. Cabanillas
    M. J. Dos Santos
    C. A. Raposo
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [5] Stability Results for a Laminated Beam with Kelvin-Voigt Damping
    Ramos, A. J. A.
    Freitas, M. M.
    Cabanillas, V. R.
    Dos Santos, M. J.
    Raposo, C. A.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2023, 46 (05)
  • [6] Stability of a Timoshenko System with Localized Kelvin-Voigt Dissipation
    Aguilera Contreras, Gabriel
    Munoz Rivera, Jaime E.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (03): : 3547 - 3563
  • [7] Exponential stability of an elastic string with local Kelvin–Voigt damping
    Qiong Zhang
    Zeitschrift für angewandte Mathematik und Physik, 2010, 61 : 1009 - 1015
  • [8] Stability of a Timoshenko system with local Kelvin-Voigt damping
    Tian, Xinhong
    Zhang, Qiong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (01):
  • [9] Stability of the wave equations on a tree with local Kelvin–Voigt damping
    Kaïs Ammari
    Zhuangyi Liu
    Farhat Shel
    Semigroup Forum, 2020, 100 : 364 - 382
  • [10] Stability for the Timoshenko Beam System with Local Kelvin–Voigt Damping
    Hong Liang Zhao
    Kang Sheng Liu
    Chun Guo Zhang
    Acta Mathematica Sinica, 2005, 21 : 655 - 666