Stability of a Timoshenko System with Localized Kelvin–Voigt Dissipation

被引:0
|
作者
Gabriel Aguilera Contreras
Jaime E. Muñoz Rivera
机构
[1] University of Bio-Bio,Department of Mathematics
[2] LNCC,undefined
来源
关键词
Timoshenko beam; Localized viscoelastic dissipative mechanism; Transmission problem; Exponential stability; Polynomial decay; 35B40; 35P05; 35Q74;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the Timoshenko beam with localized Kelvin–Voigt dissipation distributed over two components: one of them with constitutive law of the type C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^1$$\end{document}, and the other with discontinuous law. The third component is simply elastic, where the viscosity is not effective. Our main result is that the decay depends on the position of the components. We will show that the system is exponentially stable if and only if the component with discontinuous constitutive law is not in the center of the beam. When the discontinuous component is in the middle, the solution decays polynomially.
引用
收藏
页码:3547 / 3563
页数:16
相关论文
共 50 条
  • [1] Stability of a Timoshenko System with Localized Kelvin-Voigt Dissipation
    Aguilera Contreras, Gabriel
    Munoz Rivera, Jaime E.
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (03): : 3547 - 3563
  • [2] STABILITY OF AN N-COMPONENT TIMOSHENKO BEAM WITH LOCALIZED KELVIN-VOIGT AND FRICTIONAL DISSIPATION
    Maryati, Tita K.
    Munoz Rivera, Jaime E.
    Rambaud, Amelie
    Vera, Octavio
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [3] Stability of a Timoshenko system with local Kelvin–Voigt damping
    Xinhong Tian
    Qiong Zhang
    Zeitschrift für angewandte Mathematik und Physik, 2017, 68
  • [4] Stability of a Timoshenko system with local Kelvin-Voigt damping
    Tian, Xinhong
    Zhang, Qiong
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (01):
  • [5] Stability for the Timoshenko Beam System with Local Kelvin–Voigt Damping
    Hong Liang Zhao
    Kang Sheng Liu
    Chun Guo Zhang
    Acta Mathematica Sinica, 2005, 21 : 655 - 666
  • [6] Lack of exponential stability to Timoshenko system with viscoelastic Kelvin–Voigt type
    Andréia Malacarne
    Jaime Edilberto Muñoz Rivera
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [7] Stability for the Timoshenko Beam System with Local Kelvin-Voigt Damping
    Hong Liang ZHAO
    Chun Guo ZHANG
    Acta Mathematica Sinica(English Series), 2005, 21 (03) : 655 - 666
  • [8] Stability for the Timoshenko beam system with local Kelvin-Voigt damping
    Zhao, HL
    Liu, KS
    Zhang, CG
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2005, 21 (03) : 655 - 666
  • [9] BRESSE SYSTEMS WITH LOCALIZED KELVIN-VOIGT DISSIPATION
    Contreras, Gabriel Aguilera
    Munoz-Rivera, Jaime E.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2021,
  • [10] Lack of exponential stability to Timoshenko system with viscoelastic Kelvin-Voigt type
    Malacarne, Andreia
    Munoz Rivera, Jaime Edilberto
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (03):