Warped Product Bi-slant Immersions in Kaehler Manifolds

被引:0
|
作者
Siraj Uddin
Bang-Yen Chen
Falleh R. Al-Solamy
机构
[1] King Abdulaziz University,Department of Mathematics, Faculty of Science
[2] Michigan State University,Department of Mathematics
来源
Mediterranean Journal of Mathematics | 2017年 / 14卷
关键词
Warped product; slant submanifolds; bi-slant submanifolds; warped product bi-slant submanifolds; Kaehler manifolds; 53C40; 53C42; 53C15;
D O I
暂无
中图分类号
学科分类号
摘要
A submanifold M of an almost Hermitian manifold (M~,g,J)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\widetilde{M},g,J)$$\end{document} is called slant, if for each point p∈M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in M$$\end{document} and 0≠X∈TpM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\ne X\in T_p M$$\end{document}, the angle between JX and TpM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_p M$$\end{document} is constant (see Chen in Bull Aust Math Soc 41:135–147, 1990). Later, Carriazo (in: Proceedings of the ICRAMS 2000, Kharagpur, 2000) defined the notion of bi-slant immersions as an extension of slant immersions. In this paper, we study warped product bi-slant submanifolds in Kaehler manifolds and provide some examples of warped product bi-slant submanifolds in some complex Euclidean spaces. Our main theorem states that every warped product bi-slant submanifold in a Kaehler manifold is either a Riemannian product or a warped product hemi-slant submanifold.
引用
收藏
相关论文
共 50 条
  • [21] Geometric inequalities for warped product bi-slant submanifolds with a warping function
    Siddiqui, Aliya Naaz
    Shahid, Mohammad Hasan
    Lee, Jae Won
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [22] Bi-warped Product Submanifolds of Nearly Kaehler Manifolds
    Siraj Uddin
    Bang-Yen Chen
    Awatif AL-Jedani
    Azeb Alghanemi
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 1945 - 1958
  • [23] Bi-warped Product Submanifolds of Nearly Kaehler Manifolds
    Uddin, Siraj
    Chen, Bang-Yen
    AL-Jedani, Awatif
    Alghanemi, Azeb
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (02) : 1945 - 1958
  • [24] Geometry of Warped Product Semi-Slant Submanifolds of Nearly Kaehler Manifolds
    Al-Solamy, Falleh Rijaullah
    Khan, Viqar Azam
    Uddin, Siraj
    RESULTS IN MATHEMATICS, 2017, 71 (3-4) : 783 - 799
  • [25] Geometry of Warped Product Semi-Slant Submanifolds of Nearly Kaehler Manifolds
    Falleh Rijaullah Al-Solamy
    Viqar Azam Khan
    Siraj Uddin
    Results in Mathematics, 2017, 71 : 783 - 799
  • [26] Geometric inequalities for warped product bi-slant submanifolds with a warping function
    Aliya Naaz Siddiqui
    Mohammad Hasan Shahid
    Jae Won Lee
    Journal of Inequalities and Applications, 2018
  • [27] Warped product pointwise semi-slant submanifolds of nearly Kaehler manifolds
    Bossly, Rawan
    Alqahtani, Lamia Saeed
    FILOMAT, 2024, 38 (05) : 1729 - 1736
  • [28] Geometric classification of warped product submanifolds of nearly Kaehler manifolds with a slant fiber
    Ali, Akram
    Lee, Jae Won
    Alkhaldi, Ali H.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (02)
  • [29] Non-existence of Warped Product Semi-Slant Submanifolds of Kaehler Manifolds
    Bayram Sahin
    Geometriae Dedicata, 2006, 117 : 195 - 202
  • [30] Slant submanifolds of Kaehler product manifolds
    Sahin, Bayram
    Keles, Sadik
    TURKISH JOURNAL OF MATHEMATICS, 2007, 31 (01) : 65 - 77