Warped Product Bi-slant Immersions in Kaehler Manifolds

被引:0
|
作者
Siraj Uddin
Bang-Yen Chen
Falleh R. Al-Solamy
机构
[1] King Abdulaziz University,Department of Mathematics, Faculty of Science
[2] Michigan State University,Department of Mathematics
来源
关键词
Warped product; slant submanifolds; bi-slant submanifolds; warped product bi-slant submanifolds; Kaehler manifolds; 53C40; 53C42; 53C15;
D O I
暂无
中图分类号
学科分类号
摘要
A submanifold M of an almost Hermitian manifold (M~,g,J)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\widetilde{M},g,J)$$\end{document} is called slant, if for each point p∈M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in M$$\end{document} and 0≠X∈TpM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\ne X\in T_p M$$\end{document}, the angle between JX and TpM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_p M$$\end{document} is constant (see Chen in Bull Aust Math Soc 41:135–147, 1990). Later, Carriazo (in: Proceedings of the ICRAMS 2000, Kharagpur, 2000) defined the notion of bi-slant immersions as an extension of slant immersions. In this paper, we study warped product bi-slant submanifolds in Kaehler manifolds and provide some examples of warped product bi-slant submanifolds in some complex Euclidean spaces. Our main theorem states that every warped product bi-slant submanifold in a Kaehler manifold is either a Riemannian product or a warped product hemi-slant submanifold.
引用
收藏
相关论文
共 50 条
  • [41] A NOTE ON QUASI BI-SLANT SUBMANIFOLDS OF COSYMPLECTIC MANIFOLDS
    Akyol, Mehmet Akif
    Beyendi, Selahattin
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (02): : 1508 - 1521
  • [42] POINTWISE BI-SLANT SUBMERSIONS FROM COSYMPLECTIC MANIFOLDS
    Sepet, Sezin Aykurt
    Ergut, Mahmut
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (02): : 1310 - 1319
  • [43] Sequential warped product submanifolds in nearly Kaehler manifolds
    Khan, Kamran
    Khan, Viqar A.
    Khan, Meraj A.
    FILOMAT, 2023, 37 (29) : 9931 - 9943
  • [44] Chen Inequalities for Warped Product Pointwise Bi-Slant Submanifolds of Complex Space Forms and Its Applications
    Ali, Akram
    Alkhaldi, Ali H.
    SYMMETRY-BASEL, 2019, 11 (02):
  • [45] Geometry of warped product immersions of Kenmotsu space forms and its applications to slant immersions
    Ali, Akram
    Piscoran, Laurian-Ioan
    JOURNAL OF GEOMETRY AND PHYSICS, 2017, 114 : 276 - 290
  • [46] On quasi bi-slant submersions from Sasakian manifolds onto Riemannian manifolds
    Rajendra Prasad
    Punit Kumar Singh
    Sushil Kumar
    Afrika Matematika, 2021, 32 : 403 - 417
  • [47] GENERALIZED WINTGEN INEQUALITY FOR BI-SLANT SUBMANIFOLDS IN LOCALLY CONFORMAL KAEHLER SPACE FORMS
    Aquib, Mohd
    Lone, Mohamd Saleem
    Lone, Mehraj Ahmad
    MATEMATICKI VESNIK, 2018, 70 (03): : 243 - 249
  • [48] Geometry of Warped Product CR-Submanifolds in Kaehler Manifolds
    Bang-Yen Chen
    Monatshefte für Mathematik, 2001, 133 : 177 - 195
  • [49] Geometry of warped product CR-submanifolds in Kaehler manifolds
    Chen, BY
    MONATSHEFTE FUR MATHEMATIK, 2001, 133 (03): : 177 - 195
  • [50] CR-WARPED PRODUCT SUBMANIFOLDS OF NEARLY KAEHLER MANIFOLDS
    Al-Luhaibi, Nadia S.
    Al-Solamy, Falleh R.
    Khan, Viqar Azam
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (05) : 979 - 995