Warped Product Bi-slant Immersions in Kaehler Manifolds

被引:0
|
作者
Siraj Uddin
Bang-Yen Chen
Falleh R. Al-Solamy
机构
[1] King Abdulaziz University,Department of Mathematics, Faculty of Science
[2] Michigan State University,Department of Mathematics
来源
关键词
Warped product; slant submanifolds; bi-slant submanifolds; warped product bi-slant submanifolds; Kaehler manifolds; 53C40; 53C42; 53C15;
D O I
暂无
中图分类号
学科分类号
摘要
A submanifold M of an almost Hermitian manifold (M~,g,J)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\widetilde{M},g,J)$$\end{document} is called slant, if for each point p∈M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in M$$\end{document} and 0≠X∈TpM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\ne X\in T_p M$$\end{document}, the angle between JX and TpM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_p M$$\end{document} is constant (see Chen in Bull Aust Math Soc 41:135–147, 1990). Later, Carriazo (in: Proceedings of the ICRAMS 2000, Kharagpur, 2000) defined the notion of bi-slant immersions as an extension of slant immersions. In this paper, we study warped product bi-slant submanifolds in Kaehler manifolds and provide some examples of warped product bi-slant submanifolds in some complex Euclidean spaces. Our main theorem states that every warped product bi-slant submanifold in a Kaehler manifold is either a Riemannian product or a warped product hemi-slant submanifold.
引用
收藏
相关论文
共 50 条
  • [31] Non-existence of warped product semi-slant submanifolds of Kaehler manifolds
    Sahin, B
    GEOMETRIAE DEDICATA, 2006, 117 (01) : 195 - 202
  • [32] PROPER BI-SLANT PSEUDO-RIEMANNIAN SUBMERSIONS WHOSE TOTAL MANIFOLDS ARE PARA-KAEHLER MANIFOLDS
    Noyan, Esra Basarir
    Gunduzalp, Yilmaz
    HONAM MATHEMATICAL JOURNAL, 2022, 44 (03): : 370 - 383
  • [33] Pointwise bi-slant lightlike submanifolds and their warped products
    Pruthi, Megha
    Kumar, Sangeet
    JOURNAL OF GEOMETRY AND PHYSICS, 2023, 191
  • [34] On Conformal Bi-slant Riemannian Submersions from Locally Product Riemannian Manifolds
    Wani, Towseef Ali
    Lone, Mehraj Ahmad
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2024, 21 (06)
  • [35] Bi-Slant Submanifolds of Para Hermitian Manifolds
    Alegre, Pablo
    Carriazo, Alfonso
    MATHEMATICS, 2019, 7 (07)
  • [36] Geometry of CR-Slant Warped Products in Nearly Kaehler Manifolds
    Uddin, Siraj
    Chen, Bang-Yen
    Bossly, Rawan
    MATHEMATICS, 2023, 11 (12)
  • [37] GEOMETRY OF POINTWISE CR-SLANT WARPED PRODUCTS IN KAEHLER MANIFOLDS
    Chen, Bang-Yen
    Uddin, Siraj
    Al-Solamy, Falleh R.
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2020, 61 (02): : 353 - 365
  • [38] Conformal bi-slant submersion from Kenmotsu manifolds
    Al-Dayel, Ibrahim
    Shuaib, Mohammad
    AIMS MATHEMATICS, 2023, 8 (12): : 30269 - 30286
  • [39] BI-SLANT SUBMERSIONS FROM KENMOTSU MANIFOLDS ONTO RIEMANNIAN MANIFOLDS
    Bozok, Hulya Gun
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2020, 73 (03): : 331 - 338
  • [40] Warped products semi-slant and pointwise semi-slant submanifolds on Kaehler manifolds
    Pahan, Sampa
    Dey, Santu
    JOURNAL OF GEOMETRY AND PHYSICS, 2020, 155