Bi-warped Product Submanifolds of Nearly Kaehler Manifolds

被引:0
|
作者
Siraj Uddin
Bang-Yen Chen
Awatif AL-Jedani
Azeb Alghanemi
机构
[1] King Abdulaziz University,Department of Mathematics, Faculty of Science
[2] Michigan State University,Department of Mathematics
[3] University of Jeddah,Department of Mathematics, Faculty of Science
关键词
Warped product; Bi-warped product; Slant submanifold; Nearly Kaehler manifold; Semi-slant warped product submanifold; 53C15; 53C40; 53C42; 53B25;
D O I
暂无
中图分类号
学科分类号
摘要
We study bi-warped product submanifolds of nearly Kaehler manifolds which are the natural extension of warped products. We prove that every bi-warped product submanifold of the form M=MT×f1M⊥×f2Mθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=M_T\times _{f_1} M_\perp \times _{f_2} M_\theta $$\end{document} in a nearly Kaehler manifold satisfies the following sharp inequality: ‖h‖2≥2p‖∇(lnf1)‖2+4q1+109cot2θ‖∇(lnf2)‖2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Vert h\Vert ^2\ge 2p\Vert \nabla (\ln f_1)\Vert ^2+4q\left( 1+{\frac{10}{9}}\cot ^2\theta \right) \Vert \nabla (\ln f_2)\Vert ^2, \end{aligned}$$\end{document}where p=dimM⊥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=\dim M_\perp $$\end{document}, q=12dimMθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=\frac{1}{2}\dim M_\theta $$\end{document}, and f1,f2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_1,\,f_2$$\end{document} are smooth positive functions on MT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_T$$\end{document}. We also investigate the equality case of this inequality. Further, some applications of this inequality are also given.
引用
收藏
页码:1945 / 1958
页数:13
相关论文
共 50 条
  • [1] Bi-warped Product Submanifolds of Nearly Kaehler Manifolds
    Uddin, Siraj
    Chen, Bang-Yen
    AL-Jedani, Awatif
    Alghanemi, Azeb
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (02) : 1945 - 1958
  • [2] Geometric Inequalities of Bi-Warped Product Submanifolds of Nearly Kenmotsu Manifolds and Their Applications
    Ali, Akram
    Mofarreh, Fatemah
    MATHEMATICS, 2020, 8 (10) : 1 - 16
  • [3] Sequential warped product submanifolds in nearly Kaehler manifolds
    Khan, Kamran
    Khan, Viqar A.
    Khan, Meraj A.
    FILOMAT, 2023, 37 (29) : 9931 - 9943
  • [4] Geometry of Bi-Warped Product Submanifolds of Nearly Trans-Sasakian Manifolds
    Alkhaldi, Ali H.
    Ali, Akram
    MATHEMATICS, 2021, 9 (08)
  • [5] Bi-warped product submanifolds of Kenmotsu manifolds and their applications
    Uddin, Siraj
    Alkhaldi, Ali H.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2019, 16 (01)
  • [6] CR-WARPED PRODUCT SUBMANIFOLDS OF NEARLY KAEHLER MANIFOLDS
    Al-Luhaibi, Nadia S.
    Al-Solamy, Falleh R.
    Khan, Viqar Azam
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (05) : 979 - 995
  • [7] Geometry of bi-warped product submanifolds of locally product Riemannian manifolds
    Uddin, Siraj
    Mihai, Adela
    Mihai, Ion
    AL-Jedani, Awatif
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (01)
  • [8] Geometry of bi-warped product submanifolds in Sasakian and cosymplectic manifolds
    Chen, Bang-Yen
    Uddin, Siraj
    Alghanemi, Azeb
    Al-Jedani, Awatif
    Mihai, Ion
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (02)
  • [9] Geometry of bi-warped product submanifolds in Sasakian and cosymplectic manifolds
    Bang-Yen Chen
    Siraj Uddin
    Azeb Alghanemi
    Awatif Al-Jedani
    Ion Mihai
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [10] Geometry of bi-warped product submanifolds of locally product Riemannian manifolds
    Siraj Uddin
    Adela Mihai
    Ion Mihai
    Awatif AL-Jedani
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114