Bi-warped Product Submanifolds of Nearly Kaehler Manifolds

被引:0
|
作者
Siraj Uddin
Bang-Yen Chen
Awatif AL-Jedani
Azeb Alghanemi
机构
[1] King Abdulaziz University,Department of Mathematics, Faculty of Science
[2] Michigan State University,Department of Mathematics
[3] University of Jeddah,Department of Mathematics, Faculty of Science
关键词
Warped product; Bi-warped product; Slant submanifold; Nearly Kaehler manifold; Semi-slant warped product submanifold; 53C15; 53C40; 53C42; 53B25;
D O I
暂无
中图分类号
学科分类号
摘要
We study bi-warped product submanifolds of nearly Kaehler manifolds which are the natural extension of warped products. We prove that every bi-warped product submanifold of the form M=MT×f1M⊥×f2Mθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M=M_T\times _{f_1} M_\perp \times _{f_2} M_\theta $$\end{document} in a nearly Kaehler manifold satisfies the following sharp inequality: ‖h‖2≥2p‖∇(lnf1)‖2+4q1+109cot2θ‖∇(lnf2)‖2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Vert h\Vert ^2\ge 2p\Vert \nabla (\ln f_1)\Vert ^2+4q\left( 1+{\frac{10}{9}}\cot ^2\theta \right) \Vert \nabla (\ln f_2)\Vert ^2, \end{aligned}$$\end{document}where p=dimM⊥\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p=\dim M_\perp $$\end{document}, q=12dimMθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q=\frac{1}{2}\dim M_\theta $$\end{document}, and f1,f2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f_1,\,f_2$$\end{document} are smooth positive functions on MT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M_T$$\end{document}. We also investigate the equality case of this inequality. Further, some applications of this inequality are also given.
引用
收藏
页码:1945 / 1958
页数:13
相关论文
共 50 条
  • [31] Warped product CR-submanifolds in locally conformal Kaehler manifolds
    Vittoria Bonanzinga
    Koji Matsumoto
    Periodica Mathematica Hungarica, 2004, 48 (1-2) : 207 - 221
  • [32] Geometry of Warped Product CR-Submanifolds in Kaehler Manifolds, II
    Bang-Yen Chen
    Monatshefte für Mathematik, 2001, 134 : 103 - 119
  • [33] Geometry of warped product CR-submanifolds in Kaehler manifolds, II
    Chen, BY
    MONATSHEFTE FUR MATHEMATIK, 2001, 134 (02): : 103 - 119
  • [34] Bi-warped products and applications in locally product Riemannian manifolds
    Al-Jedani, Awatif
    Uddin, Siraj
    Alghanemi, Azeb
    Mihai, Ion
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 144 : 358 - 369
  • [35] Warped Product Bi-slant Immersions in Kaehler Manifolds
    Siraj Uddin
    Bang-Yen Chen
    Falleh R. Al-Solamy
    Mediterranean Journal of Mathematics, 2017, 14
  • [36] Another characterization of warped product submanifolds of nearly cosymplectic manifolds
    Alkhaldi, Ali H.
    Kamal, Abid
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2018, 13 (02): : 1248 - 1259
  • [37] A NOTE ON GCR-LIGHTLIKE WARPED PRODUCT SUBMANIFOLDS IN INDEFINITE KAEHLER MANIFOLDS
    Kumar, Sangeet
    Pruthi, Megha
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 36 (04): : 783 - 800
  • [38] Geometry of Warped Product Pointwise Semi-Slant Submanifolds of Kaehler Manifolds
    Ali, Akram
    Uddin, Siraj
    Othman, Wan Ainun Mior
    FILOMAT, 2017, 31 (12) : 3771 - 3788
  • [39] Warped Product Bi-slant Immersions in Kaehler Manifolds
    Uddin, Siraj
    Chen, Bang-Yen
    Al-Solamy, Falleh R.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (02)
  • [40] GENERIC WARPED PRODUCT SUBMANIFOLDS IN A KAEHLER MANIFOLD
    Khan, K. A.
    Ali, Shahid
    Jamal, Nargis
    FILOMAT, 2008, 22 (01) : 139 - 144