Warped Product Bi-slant Immersions in Kaehler Manifolds

被引:0
|
作者
Siraj Uddin
Bang-Yen Chen
Falleh R. Al-Solamy
机构
[1] King Abdulaziz University,Department of Mathematics, Faculty of Science
[2] Michigan State University,Department of Mathematics
来源
关键词
Warped product; slant submanifolds; bi-slant submanifolds; warped product bi-slant submanifolds; Kaehler manifolds; 53C40; 53C42; 53C15;
D O I
暂无
中图分类号
学科分类号
摘要
A submanifold M of an almost Hermitian manifold (M~,g,J)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\widetilde{M},g,J)$$\end{document} is called slant, if for each point p∈M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in M$$\end{document} and 0≠X∈TpM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\ne X\in T_p M$$\end{document}, the angle between JX and TpM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_p M$$\end{document} is constant (see Chen in Bull Aust Math Soc 41:135–147, 1990). Later, Carriazo (in: Proceedings of the ICRAMS 2000, Kharagpur, 2000) defined the notion of bi-slant immersions as an extension of slant immersions. In this paper, we study warped product bi-slant submanifolds in Kaehler manifolds and provide some examples of warped product bi-slant submanifolds in some complex Euclidean spaces. Our main theorem states that every warped product bi-slant submanifold in a Kaehler manifold is either a Riemannian product or a warped product hemi-slant submanifold.
引用
收藏
相关论文
共 50 条
  • [1] Warped Product Bi-slant Immersions in Kaehler Manifolds
    Uddin, Siraj
    Chen, Bang-Yen
    Al-Solamy, Falleh R.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (02)
  • [2] Warped product pointwise bi-slant submanifolds of Kaehler manifolds
    Chen, Bang-Yen
    Uddin, Siraj
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2018, 92 (1-2): : 183 - 199
  • [3] Warped Product Quasi Bi-Slant Submanifolds of Kaehler Manifolds
    Lone, M. A.
    Majeed, P.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (02) : 718 - 727
  • [4] Warped Product Bi-Slant Submanifolds of Cosymplectic Manifolds
    Alqahtani, Lamia Saeed
    Stankovic, Mica S.
    Uddin, Siraj
    FILOMAT, 2017, 31 (16) : 5065 - 5071
  • [5] Warped product pointwise bi-slant submanifolds of kenmotsu manifolds
    Hui, Shyamal Kumar
    Roy, Joydeb
    Pal, Tanumoy
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (10)
  • [6] Quasi Bi-Slant Submanifolds of Kaehler Manifolds
    Prasad, Rajendra
    Akyol, Mehmet Akif
    Verma, Sandeep Kumar
    Kumar, Sumeet
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2022, 15 (01): : 57 - 68
  • [7] On warped product pointwise quasi bi-slant submanifolds of Kenmotsu manifolds
    Prince Majeed
    Mehraj Ahmad Lone
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2025, 71 (1)
  • [8] Warped product pointwise bi-slant submanifolds of locally product Riemannian manifolds
    Majeed, Prince
    Lone, Mehraj Ahmad
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2025, 54 (01): : 200 - 212
  • [9] QUASI BI-SLANT SUBMANIFOLDS OF NEARLY KAEHLER MANIFOLDS
    Prasad, Rajendra
    Singh, Shweta
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 15 (4B): : 1093 - 1110
  • [10] Warped product submanifolds of Kaehler manifolds with a slant factor
    Sahin, Bayram
    ANNALES POLONICI MATHEMATICI, 2009, 95 (03) : 207 - 226