A submanifold M of an almost Hermitian manifold (M~,g,J)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(\widetilde{M},g,J)$$\end{document} is called slant, if for each point p∈M\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p\in M$$\end{document} and 0≠X∈TpM\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$0\ne X\in T_p M$$\end{document}, the angle between JX and TpM\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$T_p M$$\end{document} is constant (see Chen in Bull Aust Math Soc 41:135–147, 1990). Later, Carriazo (in: Proceedings of the ICRAMS 2000, Kharagpur, 2000) defined the notion of bi-slant immersions as an extension of slant immersions. In this paper, we study warped product bi-slant submanifolds in Kaehler manifolds and provide some examples of warped product bi-slant submanifolds in some complex Euclidean spaces. Our main theorem states that every warped product bi-slant submanifold in a Kaehler manifold is either a Riemannian product or a warped product hemi-slant submanifold.