Properties of Codes from Difference Sets in 2-Groups

被引:0
|
作者
Deirdre Longacher Smeltzer
机构
[1] University of St. Thomas,Department of Mathematics
来源
关键词
difference sets; 2-groups; bent functions; Reed-Muller codes; divisor (of a code);
D O I
暂无
中图分类号
学科分类号
摘要
A ( v, k, λ)-difference set D in a group G can be used to create a symmetric 2-( v, k, λ) design, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{D}$$ \end{document}, from which arises a code C, generated by vectors corresponding to the characteristic function of blocks of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{D}$$ \end{document}. This paper examines properties of the code C, and of a subcode, Co=JC, where J is the radical of the group algebra of G over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{Z}_2 $$ \end{document}. When G is a 2-group, it is shown that Co is equivalent to the first-order Reed-Muller code, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{R}(1,2s + 2)$$ \end{document}, precisely when the 2-divisor of Co is maximal. In addition, ifD is a non-trivial difference set in an elementary abelian 2-group, and if D is generated by a quadratic bent function, then Co is equal to a power of the radical. Finally, an example is given of a difference set whose characteristic function is not quadratic, although the 2-divisor of Co is maximal.
引用
收藏
页码:291 / 306
页数:15
相关论文
共 50 条
  • [41] GENERATORS OF 2-GROUPS
    MANN, A
    ISRAEL JOURNAL OF MATHEMATICS, 1971, 10 (02) : 158 - &
  • [42] On skew 2-groups
    Mann, Avinoam
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2006, 69 (03): : 353 - 360
  • [43] ON THE SOLVABILITY OF 2-GROUPS
    ENDIMIONI, G
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 316 (12): : 1253 - 1255
  • [44] DUADIC CODES AND DIFFERENCE SETS
    RUSHANAN, JJ
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1991, 57 (02) : 254 - 261
  • [45] On Pseudofunctors Sending Groups to 2-Groups
    Cigoli, Alan S. S.
    Mantovani, Sandra
    Metere, Giuseppe
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (01)
  • [46] Braiding from 2-groups to 2-groupoids
    Ulualan, E.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2006, 30 (A3): : 325 - 341
  • [47] POISSON 2-GROUPS
    Chen, Zhuo
    Stienon, Mathieu
    Xu, Ping
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2013, 94 (02) : 209 - 240
  • [48] M-GROUPS AND 2-GROUPS
    DORNHOFF, L
    MATHEMATISCHE ZEITSCHRIFT, 1967, 100 (03) : 226 - &
  • [49] DIFFERENCE SETS IN DIHEDRAL GROUPS AND INTERLOCKING DIFFERENCE SETS
    FAN, CT
    SIU, MK
    MA, SL
    ARS COMBINATORIA, 1985, 20A : 99 - 107
  • [50] On Pseudofunctors Sending Groups to 2-Groups
    Alan S. Cigoli
    Sandra Mantovani
    Giuseppe Metere
    Mediterranean Journal of Mathematics, 2023, 20