On Pseudofunctors Sending Groups to 2-Groups

被引:0
|
作者
Alan S. Cigoli
Sandra Mantovani
Giuseppe Metere
机构
[1] Università degli Studi di Torino,Dipartimento di Matematica “Giuseppe Peano”
[2] Università degli Studi di Milano,Dipartimento di Matematica “Federigo Enriques”
[3] Università degli Studi di Palermo,Dipartimento di Matematica e Informatica
来源
关键词
Pseudofunctor; internal groups; 2-groups; monoidal opfibration; 18C40; 18D30; 18G45; 18M05;
D O I
暂无
中图分类号
学科分类号
摘要
For a category B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsf{B}}$$\end{document} with finite products, we first characterize pseudofunctors from B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsf{B}}$$\end{document} to Cat\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}\textsf{at}$$\end{document} whose associated opfibration is Cartesian monoidal. Among those, we then characterize the ones which extend to pseudofunctors from internal groups to 2-groups. If B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textsf{B}}$$\end{document} is additive, this is the case precisely when the associated opfibration has groupoidal fibres.
引用
收藏
相关论文
共 50 条
  • [1] On Pseudofunctors Sending Groups to 2-Groups
    Cigoli, Alan S. S.
    Mantovani, Sandra
    Metere, Giuseppe
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (01)
  • [2] On 2-groups as Galois groups
    Ledet, A
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1995, 47 (06): : 1253 - 1273
  • [3] Automorphism groups of 2-groups
    Eick, Bettina
    [J]. JOURNAL OF ALGEBRA, 2006, 300 (01) : 91 - 101
  • [4] From loop groups to 2-groups
    Baez, John C.
    Stevenson, Danny
    Crans, Alissa S.
    Schreiber, Urs
    [J]. HOMOLOGY HOMOTOPY AND APPLICATIONS, 2007, 9 (02) : 101 - 135
  • [5] M-GROUPS AND 2-GROUPS
    DORNHOFF, L
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1967, 100 (03) : 226 - &
  • [6] ON GROUPS WITH ABELIAN SYLOW 2-GROUPS
    GAGEN, TM
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1965, 90 (04) : 268 - &
  • [7] On Schur 2-Groups
    Muzychuk M.E.
    Ponomarenko I.N.
    [J]. Journal of Mathematical Sciences, 2016, 219 (4) : 565 - 594
  • [8] WALL GROUPS FOR ELEMENTARY 2-GROUPS
    HARSILADZE, AF
    [J]. MATHEMATICS OF THE USSR-SBORNIK, 1981, 114 (01): : 145 - 154
  • [9] Covering groups of nonconnected topological groups and 2-groups
    Rumynin, Dmitriy
    Vakhrameev, Demyan
    Westaway, Matthew
    [J]. COMMUNICATIONS IN ALGEBRA, 2019, 47 (12) : 5207 - 5217
  • [10] INVOLUTIONS IN 2-GROUPS
    BLACKBURN, N
    [J]. ARCHIV DER MATHEMATIK, 1980, 35 (1-2) : 75 - 78