Properties of Codes from Difference Sets in 2-Groups

被引:0
|
作者
Deirdre Longacher Smeltzer
机构
[1] University of St. Thomas,Department of Mathematics
来源
关键词
difference sets; 2-groups; bent functions; Reed-Muller codes; divisor (of a code);
D O I
暂无
中图分类号
学科分类号
摘要
A ( v, k, λ)-difference set D in a group G can be used to create a symmetric 2-( v, k, λ) design, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{D}$$ \end{document}, from which arises a code C, generated by vectors corresponding to the characteristic function of blocks of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{D}$$ \end{document}. This paper examines properties of the code C, and of a subcode, Co=JC, where J is the radical of the group algebra of G over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{Z}_2 $$ \end{document}. When G is a 2-group, it is shown that Co is equivalent to the first-order Reed-Muller code, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{R}(1,2s + 2)$$ \end{document}, precisely when the 2-divisor of Co is maximal. In addition, ifD is a non-trivial difference set in an elementary abelian 2-group, and if D is generated by a quadratic bent function, then Co is equal to a power of the radical. Finally, an example is given of a difference set whose characteristic function is not quadratic, although the 2-divisor of Co is maximal.
引用
收藏
页码:291 / 306
页数:15
相关论文
共 50 条
  • [21] Partial difference sets and amorphic Cayley schemes in non-abelian 2-groups
    Feng, Tao
    He, Zhiwen
    Chen, Yu Qing
    JOURNAL OF COMBINATORIAL DESIGNS, 2020, 28 (04) : 273 - 293
  • [22] A CONSTRUCTION OF DIFFERENCE SETS IN HIGH EXPONENT 2-GROUPS USING REPRESENTATION-THEORY
    DAVIS, JA
    SMITH, K
    JOURNAL OF ALGEBRAIC COMBINATORICS, 1994, 3 (02) : 137 - 151
  • [23] Negative Latin square type partial difference sets in nonelementary abelian 2-groups
    Davis, JA
    Xiang, Q
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2004, 70 : 125 - 141
  • [24] Constructions of low rank relative difference sets in 2-groups using Galois rings
    Xiang, Q
    Davis, JA
    FINITE FIELDS AND THEIR APPLICATIONS, 2000, 6 (02) : 130 - 145
  • [25] From loop groups to 2-groups
    Baez, John C.
    Stevenson, Danny
    Crans, Alissa S.
    Schreiber, Urs
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2007, 9 (02) : 101 - 135
  • [26] Central and non central codes of dihedral 2-groups
    Gupta, S.
    Rani, P.
    ALGEBRA AND DISCRETE MATHEMATICS, 2022, 33 (01): : 87 - 98
  • [27] New negative Latin square type partial difference sets in nonelementary abelian 2-groups and 3-groups
    John Polhill
    Designs, Codes and Cryptography, 2008, 46 : 365 - 377
  • [28] New negative Latin square type partial difference sets in nonelementary abelian 2-groups and 3-groups
    Polhill, John
    DESIGNS CODES AND CRYPTOGRAPHY, 2008, 46 (03) : 365 - 377
  • [29] Subgroup Perfect Codes of 2-Groups with Cyclic Maximal Subgroups
    Bu, Xu Cheng
    Li, Jing Jian
    Zhang, Jun Yang
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2025, 48 (03)
  • [30] THE WEIGHT DISTRIBUTION OF INDECOMPOSABLE CYCLIC CODES OVER 2-GROUPS
    ZIMMERMANN, KH
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1992, 60 (01) : 85 - 103