Properties of Codes from Difference Sets in 2-Groups

被引:0
|
作者
Deirdre Longacher Smeltzer
机构
[1] University of St. Thomas,Department of Mathematics
来源
关键词
difference sets; 2-groups; bent functions; Reed-Muller codes; divisor (of a code);
D O I
暂无
中图分类号
学科分类号
摘要
A ( v, k, λ)-difference set D in a group G can be used to create a symmetric 2-( v, k, λ) design, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{D}$$ \end{document}, from which arises a code C, generated by vectors corresponding to the characteristic function of blocks of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{D}$$ \end{document}. This paper examines properties of the code C, and of a subcode, Co=JC, where J is the radical of the group algebra of G over \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathbb{Z}_2 $$ \end{document}. When G is a 2-group, it is shown that Co is equivalent to the first-order Reed-Muller code, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{R}(1,2s + 2)$$ \end{document}, precisely when the 2-divisor of Co is maximal. In addition, ifD is a non-trivial difference set in an elementary abelian 2-group, and if D is generated by a quadratic bent function, then Co is equal to a power of the radical. Finally, an example is given of a difference set whose characteristic function is not quadratic, although the 2-divisor of Co is maximal.
引用
收藏
页码:291 / 306
页数:15
相关论文
共 50 条
  • [31] Grassmannian codes from paired difference sets
    Matthew Fickus
    Joseph W. Iverson
    John Jasper
    Emily J. King
    Designs, Codes and Cryptography, 2021, 89 : 2553 - 2576
  • [32] Quantum Stabilizer Codes From Difference Sets
    Xie, Yixuan
    Yuan, Jinhong
    Malaney, Robert
    2013 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2013, : 524 - 528
  • [33] Grassmannian codes from paired difference sets
    Fickus, Matthew
    Iverson, Joseph W.
    Jasper, John
    King, Emily J.
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (11) : 2553 - 2576
  • [34] On 2-groups as Galois groups
    Ledet, A
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1995, 47 (06): : 1253 - 1273
  • [35] Automorphism groups of 2-groups
    Eick, Bettina
    JOURNAL OF ALGEBRA, 2006, 300 (01) : 91 - 101
  • [36] On Schur 2-Groups
    Muzychuk M.E.
    Ponomarenko I.N.
    Journal of Mathematical Sciences, 2016, 219 (4) : 565 - 594
  • [37] INVOLUTIONS IN 2-GROUPS
    BLACKBURN, N
    ARCHIV DER MATHEMATIK, 1980, 35 (1-2) : 75 - 78
  • [38] On monotone 2-groups
    Crestani, Eleonora
    Menegazzo, Federico
    JOURNAL OF GROUP THEORY, 2012, 15 (03) : 359 - 383
  • [39] DISJOINT DIFFERENCE SETS, DIFFERENCE TRIANGLE SETS, AND RELATED CODES
    ZHI, C
    PINGZHI, F
    FAN, J
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) : 518 - 522
  • [40] AUTOMORPHISMS OF 2-GROUPS
    MCBRIDE, PP
    COMMUNICATIONS IN ALGEBRA, 1983, 11 (08) : 843 - 862