Nonlocal time porous medium equation with fractional time derivative

被引:0
|
作者
Jean-Daniel Djida
Juan J. Nieto
Iván Area
机构
[1] Universidade de Santiago de Compostela,Instituto de Matemáticas, Departamento de Estatística, Análise Matemática e Optimización
[2] African Institute for Mathematical Sciences,Departamento de Matemática Aplicada II, E.E. Aeronáutica e do Espazo
[3] AIMS-Cameroon,undefined
[4] Universidade de Vigo,undefined
来源
关键词
Nonlinear fractional diffusion; Regularity; Nonlocal diffusion; Fractional Laplacian; Fractional derivatives; Existence of weak solutions; Energy estimates; 35B65; 26A33; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
We consider nonlinear nonlocal diffusive evolution equations, governed by a Lévy-type nonlocal operator, fractional time derivative and involving porous medium type nonlinearities. Existence and uniqueness of weak solutions are established using approximating solutions and the theory of maximal monotone operators. Using the De Giorgi–Nash–Moser technique, we prove that the solutions are bounded and Hölder continuous for all positive time.
引用
收藏
页码:273 / 304
页数:31
相关论文
共 50 条
  • [31] APPROXIMATION OF THE ERDELYI-KOBER OPERATOR WITH APPLICATION TO THE TIME-FRACTIONAL POROUS MEDIUM EQUATION
    Plociniczak, Lukasz
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2014, 74 (04) : 1219 - 1237
  • [32] Analytical studies of a time-fractional porous medium equation. Derivation, approximation and applications
    Plociniczak, Lukasz
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 24 (1-3) : 169 - 183
  • [33] Nonlocal Multipoint (in Time) Problem with Oblique Derivative for a Parabolic Equation with Degeneration
    Pukal’s’kyi І.D.
    Yashan B.O.
    Journal of Mathematical Sciences, 2020, 247 (1) : 43 - 57
  • [34] Barenblatt profiles for a nonlocal porous medium equation
    Biler, Piotr
    Imbert, Cyril
    Karch, Grzegorz
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (11-12) : 641 - 645
  • [35] Numerical Solution of a Quasilinear Parabolic Equation with a Fractional Time Derivative
    Lapin, A. V.
    Levinskaya, K. O.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2020, 41 (12) : 2673 - 2686
  • [36] On a time fractional diffusion with nonlocal in time conditions
    Tuan, Nguyen Hoang
    Triet, Nguyen Anh
    Luc, Nguyen Hoang
    Phuong, Nguyen Duc
    ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [37] Numerical Solution of a Quasilinear Parabolic Equation with a Fractional Time Derivative
    A. V. Lapin
    K. O. Levinskaya
    Lobachevskii Journal of Mathematics, 2020, 41 : 2673 - 2686
  • [38] TIME FRACTIONAL DIFFERENTIAL EQUATION MODEL WITH RANDOM DERIVATIVE ORDER
    Sun, Hongguang
    Chen, Yangquan
    Chen, Wen
    PROCEEDINGS OF ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, VOL 4, PTS A-C, 2010, : 1301 - 1306
  • [39] Solving Time Fractional Schrödinger Equation in the Sense of Local Fractional Derivative
    Bayrak, Mine Aylin
    Demir, Ali
    Journal of Computational and Nonlinear Dynamics, 2021, 16 (08)
  • [40] Time fractional diffusion equation based on Caputo fractional derivative for image denoising
    Chen, Huaiguang
    Qiao, Haili
    Wei, Wenyu
    Li, Jin
    OPTICS AND LASER TECHNOLOGY, 2024, 168