Nonlocal time porous medium equation with fractional time derivative

被引:0
|
作者
Jean-Daniel Djida
Juan J. Nieto
Iván Area
机构
[1] Universidade de Santiago de Compostela,Instituto de Matemáticas, Departamento de Estatística, Análise Matemática e Optimización
[2] African Institute for Mathematical Sciences,Departamento de Matemática Aplicada II, E.E. Aeronáutica e do Espazo
[3] AIMS-Cameroon,undefined
[4] Universidade de Vigo,undefined
来源
关键词
Nonlinear fractional diffusion; Regularity; Nonlocal diffusion; Fractional Laplacian; Fractional derivatives; Existence of weak solutions; Energy estimates; 35B65; 26A33; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
We consider nonlinear nonlocal diffusive evolution equations, governed by a Lévy-type nonlocal operator, fractional time derivative and involving porous medium type nonlinearities. Existence and uniqueness of weak solutions are established using approximating solutions and the theory of maximal monotone operators. Using the De Giorgi–Nash–Moser technique, we prove that the solutions are bounded and Hölder continuous for all positive time.
引用
收藏
页码:273 / 304
页数:31
相关论文
共 50 条
  • [1] Nonlocal time porous medium equation with fractional time derivative
    Djida, Jean-Daniel
    Nieto, Juan J.
    Area, Ivan
    REVISTA MATEMATICA COMPLUTENSE, 2019, 32 (02): : 273 - 304
  • [2] Nonlocal Telegraph Equation in Frame of the Conformable Time-Fractional Derivative
    Bouaouid, Mohamed
    Hilal, Khalid
    Melliani, Said
    ADVANCES IN MATHEMATICAL PHYSICS, 2019, 2019
  • [3] Porous Medium Flow with Both a Fractional Potential Pressure and Fractional Time Derivative
    Mark ALLEN
    Luis CAFFARELLI
    Alexis VASSEUR
    ChineseAnnalsofMathematics,SeriesB, 2017, (01) : 45 - 82
  • [4] Porous medium flow with both a fractional potential pressure and fractional time derivative
    Mark Allen
    Luis Caffarelli
    Alexis Vasseur
    Chinese Annals of Mathematics, Series B, 2017, 38 : 45 - 82
  • [5] Porous Medium Flow with Both a Fractional Potential Pressure and Fractional Time Derivative
    Allen, Mark
    Caffarelli, Luis
    Vasseur, Alexis
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2017, 38 (01) : 45 - 82
  • [7] SPACE-TIME FRACTIONAL SCHRODINGER EQUATION WITH COMPOSITE TIME FRACTIONAL DERIVATIVE
    Dubbeldam, Johan L. A.
    Tomovski, Zivorad
    Sandev, Trifce
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (05) : 1179 - 1200
  • [8] NONLOCAL TIME-POROUS MEDIUM EQUATION: WEAK SOLUTIONS AND FINITE SPEED OF PROPAGATION
    Djida, Jean-Daniel
    Nieto, Juan J.
    Area, Ivan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (08): : 4031 - 4053
  • [9] Time fractional Schrodinger equation with a limit based fractional derivative
    Zu, Chuanjin
    Yu, Xiangyang
    CHAOS SOLITONS & FRACTALS, 2022, 157
  • [10] Generalized space-time fractional diffusion equation with composite fractional time derivative
    Tomovski, Zivorad
    Sandev, Trifce
    Metzler, Ralf
    Dubbeldam, Johan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (08) : 2527 - 2542