Nonlocal time porous medium equation with fractional time derivative

被引:0
|
作者
Jean-Daniel Djida
Juan J. Nieto
Iván Area
机构
[1] Universidade de Santiago de Compostela,Instituto de Matemáticas, Departamento de Estatística, Análise Matemática e Optimización
[2] African Institute for Mathematical Sciences,Departamento de Matemática Aplicada II, E.E. Aeronáutica e do Espazo
[3] AIMS-Cameroon,undefined
[4] Universidade de Vigo,undefined
来源
关键词
Nonlinear fractional diffusion; Regularity; Nonlocal diffusion; Fractional Laplacian; Fractional derivatives; Existence of weak solutions; Energy estimates; 35B65; 26A33; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
We consider nonlinear nonlocal diffusive evolution equations, governed by a Lévy-type nonlocal operator, fractional time derivative and involving porous medium type nonlinearities. Existence and uniqueness of weak solutions are established using approximating solutions and the theory of maximal monotone operators. Using the De Giorgi–Nash–Moser technique, we prove that the solutions are bounded and Hölder continuous for all positive time.
引用
收藏
页码:273 / 304
页数:31
相关论文
共 50 条
  • [21] Time-fractional diffusion equation with ψ-Hilfer derivative
    Vieira, Nelson
    Rodrigues, M. Manuela
    Ferreira, Milton
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (06):
  • [22] Time periodic solutions of porous medium equation
    Zhou, Jun
    Mu, Chunlai
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2010, 33 (16) : 1942 - 1954
  • [23] Nonlocal (In Time) Problem for the Evolutionary Equation with Fractional Differential Operator
    Horodets’kyi V.V.
    Kolisnyk R.S.
    Shevchuk N.M.
    Journal of Mathematical Sciences, 2023, 273 (2) : 181 - 205
  • [24] Solving Time Fractional Schrodinger Equation in the Sense of Local Fractional Derivative
    Bayrak, Mine Aylin
    Demir, Ali
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2021, 16 (08):
  • [25] A new fractional derivative for solving time fractional diffusion wave equation
    Liu, Jian-Gen
    Yang, Xiao-Jun
    Feng, Yi-Ying
    Geng, Lu-Lu
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (01) : 267 - 272
  • [26] MODIFIED WASSERSTEIN GRADIENT FLOW FORMULATION OF TIME-FRACTIONAL POROUS MEDIUM EQUATIONS WITH NONLOCAL PRESSURE
    Chung, Nhan-phu
    Trinh, Thanh-son
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025,
  • [27] On a nonlocal problem for a Caputo time-fractional pseudoparabolic equation
    Nguyen, Anh Tuan
    Hammouch, Zakia
    Karapinar, Erdal
    Tuan, Nguyen Huy
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (18) : 14791 - 14806
  • [28] Space-time spectral method for the Cattaneo equation with time fractional derivative
    Li, Hui
    Jiang, Wei
    Li, Wenya
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 349 : 325 - 336
  • [29] Long-time asymptotics for a 1D nonlocal porous medium equation with absorption or convection
    Feo, Filomena
    Huang, Yanghong
    Volzone, Bruno
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (03)
  • [30] ANALYTICAL STUDY OF TIME FRACTIONAL FRACTURED POROUS MEDIUM EQUATION UNDER THE EFFECT OF MAGNETIC FIELD
    Gohil, V. P.
    Meher, Ramakanta
    SPECIAL TOPICS & REVIEWS IN POROUS MEDIA-AN INTERNATIONAL JOURNAL, 2019, 10 (02) : 99 - 113